Urban traffic is an important source of global CO2 emissions. Uncovering the temporal and structural characteristics can provide scientific support to identify the variation regulation and main subjects of urban traffic CO2 emissions. The road class is one of the most important factors influencing the urban traffic CO2 emissions. Based on the annual traffic field monitoring work in 2014 and the localized MOVES model, this study unravels the temporal variation and structural characteristics of the urban traffic CO2 emissions and conducts a comparative analysis of expressway (5R) and arterial road (DB), two typical classes of urban roads in Beijing. Obvious differences exist in the temporal variation characteristics of the traffic CO2 emissions between the expressway and arterial road at the annual, week and daily scales. The annual traffic CO2 emissions at the expressway (5R, with 47271.15 t) are more than ten times than those of the arterial road (DB, with 4139.19 t). Stronger weekly "rest effect" is observed at the expressway than the arterial road. The daily peak time and duration of the traffic CO2 emissions between the two classes of urban roads show significant differences particular in the evening peak. The differences of the structural characteristics between the two classes of urban roads are mainly reflected on the contribution of the public and freight transportation. Passenger vehicles play a predominant role at both the two classes of urban roads. The public transportation contributed more at DB (24.76%) than 5R (5.47%), and the freight transportation contributed more at 5R (23.41%) than DB (3.49%). The results suggest that the influence of traffic CO2 emissions on the CO2 flux is significant at the residential and commercial mixed underlying urban areas with arterial roads (DB) but not significant at the underlying urban park area with expressway (5R) in this study. The vegetation cover in urban areas have effects on the CO2 reduction. Increasing the design and construction of the green space along the urban roads with busy traffic flow will be an effective way to mitigate the urban traffic CO2 emissions and build the low-carbon cities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156062 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231536 | PLOS |
Environ Sci Technol
January 2025
Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah 84112, United States.
Methane (CH) is a greenhouse gas with a global warming potential 81.2 times higher than carbon dioxide (CO). The intentional emission of oxidants into the atmosphere has been proposed as a geoengineering solution to accelerate the oxidation of CH to CO, thereby reducing surface warming.
View Article and Find Full Text PDFThis study intends to optimize the carbon footprint management model of power enterprises through artificial intelligence (AI) technology to help the scientific formulation of carbon emission reduction strategies. Firstly, a carbon footprint calculation model based on big data and AI is established, and then machine learning algorithm is used to deeply mine the carbon emission data of power enterprises to identify the main influencing factors and emission reduction opportunities. Finally, the driver-state-response (DSR) model is used to evaluate the carbon audit of the power industry and comprehensively analyze the effect of carbon emission reduction.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus.
The production of nitrogen oxides (NO = NO + NO ) is substantial in urban areas and from fossil fuel-fired power plants, causing both local and regional pollution, with severe consequences for human health. To estimate their emissions and implement air quality policies, authorities often rely on reported emission inventories. The island of Cyprus is de facto divided into two different political entities, and as a result, such emissions inventories are not systematically available for the whole island.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Energy System Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No. 15, Pardis St., Molasadra Ave., Vanak Sq., Tehran, Iran.
One of the foremost challenges facing Bitcoin, as the most valuable cryptocurrency operating on a proof-of-work mechanism, is its substantial energy consumption and environmental impact. With the expansion of the Bitcoin market, mining has surged in popularity, particularly in countries where energy and monetary costs are comparatively low. This study aims to assess the impact of utilizing renewable energy from a photovoltaic system for Bitcoin mining, simulating a solar power plant with a 50.
View Article and Find Full Text PDFNanoscale
January 2025
Advanced Materials Science Innovation Center, Longmen Laboratory, Luoyang 471003, China.
CO capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO emissions and the purification of target gases. Here, a novel non-planar g-CN monolayer that could be synthesized the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-CN monolayer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!