Transient stimulated Raman scattering (SRS) of 0.3 ps 515 nm laser pulses in ${\rm BaWO_4}$BaWO crystal was experimentally demonstrated with efficiency up to ${\sim}{20}\% $∼20% for the Stokes component with a wavenumber of ${\sim}{925}\;{{\rm cm}^{ - 1}}$∼925cm in a simple single-pass geometry. This anomalous high efficiency was obtained due to the laser pulse self-phase modulation resulting in spectral broadening and seeding the SRS. The applicability of seed pulse production for a high-pressure sub-picosecond ${{\rm CO}_2}$CO laser amplifier via difference frequency generation in ${{\rm LiGaS}_2}$LiGaS crystal was numerically verified.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.391550DOI Listing

Publication Analysis

Top Keywords

stimulated raman
8
raman scattering
8
laser pulses
8
difference frequency
8
frequency generation
8
highly efficient
4
efficient stimulated
4
scattering sub-picosecond
4
laser
4
sub-picosecond laser
4

Similar Publications

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity.

Exp Mol Med

January 2025

Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, P. R. China.

Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive.

View Article and Find Full Text PDF

The physical picture for photocurrent injection and coherent control in intrinsic graphene under two-color laser excitation remains obscure. Previously, photocurrent injection of intrinsic graphene was attributed to the quantum interference between two electronic transition pathways of single-photon and two-photon absorptions as well as layer-to-layer coupling. Here, we show that quantum interference between stimulated electronic Raman scattering and single-photon absorption plays a very important role in contributing to the total photocurrent, while interlayer coupling does not sufficiently affect the photocurrent injection, which is in contrast to the previous interpretation of the experimental results on photocurrent injection and coherent control.

View Article and Find Full Text PDF

A combination of femtosecond stimulated Raman scattering and surface-enhanced Raman scattering, termed surface-enhanced stimulated Raman scattering (SE-FSRS), was proposed to leverage both temporal precision and sensitivity for advanced molecular dynamics analysis. During the initial successful implementations of this approach, unexpected spectral distortions were observed, and several potential explanations were proposed. Further progress in this novel technique and its broader implementation requires a profound understanding of the factors influencing the shape of the registered spectra and the underlying mechanisms.

View Article and Find Full Text PDF

On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics.

Anal Chem

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.

Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!