This paper addresses the task of query-focused video summarization, which takes user queries and long videos as inputs and generates query-focused video summaries. Compared to video summarization, which mainly concentrates on finding the most diverse and representative visual contents as a summary, the task of query-focused video summarization considers the user's intent and the semantic meaning of generated summary. In this paper, we propose a method, named query-biased self-attentive network (QSAN) to tackle this challenge. Our key idea is to utilize the semantic information from video descriptions to generate a generic summary and then to combine the information from the query to generate a query-focused summary. Specifically, we first propose a hierarchical self-attentive network to model the relative relationship at three levels, which are different frames from a segment, different segments of the same video, textual information of video description and its related visual contents. We train the model on video caption dataset and employ a reinforced caption generator to generate a video description, which can help us locate important frames or shots. Then we build a query-aware scoring module to compute the query-relevant score for each shot and generate the query-focused summary. Extensive experiments on the benchmark dataset demonstrate the competitive performance of our approach compared to some methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2020.2985868DOI Listing

Publication Analysis

Top Keywords

query-focused video
16
video summarization
16
self-attentive network
12
video
10
query-biased self-attentive
8
task query-focused
8
visual contents
8
generate query-focused
8
query-focused summary
8
video description
8

Similar Publications

This paper addresses the task of query-focused video summarization, which takes user queries and long videos as inputs and generates query-focused video summaries. Compared to video summarization, which mainly concentrates on finding the most diverse and representative visual contents as a summary, the task of query-focused video summarization considers the user's intent and the semantic meaning of generated summary. In this paper, we propose a method, named query-biased self-attentive network (QSAN) to tackle this challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!