Sugars are abundant natural sources existing in biological systems, and bioactive saccharides have attracted much more attention in the field of biochemistry and biomaterials. For better understanding of the sugar-based biomaterials and biological sciences, aggregation-induced emission luminogens (AIE-gens) have been widely employed for detection, tracing, and imaging. This review covers the applications of AIE molecules on sugar-based biomaterials by three parts, polysaccharide, oligosaccharide, and monosaccharide, mainly focusing on saccharide detection, stimuli response materials preparation, bioimaging, and study of the AIE mechanism. These excellent works suggest the promising future of the sugar-based AIE bioconjugates, considering that the naturally designed and elaborately functionalized saccharides play discriminate roles in biological processes and AIE-tagged species may work as an indicator in each case. However, there are a lot of sugar-based biological species that have not been touched, such as mucopolysaccharides and glycoproteins on the cell surface and in the cell plasma. Based on these features, we enthusiastically look forward to more glorious developments in this bright research area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.9b00814 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Chemistry and Environment, Jiaying University, Meisong Road 100, Meizhou 514015, China.
Direct preparation of silver nanoclusters is of great significance for their applications. In this work, by selecting sodium cyanoborohydride as a weak reducing agent to control the kinetics of the reduction reaction, we successfully prepared silver nanoclusters protected by thiol-containing ligands, including mercaptosuccinic acid, cysteine, and glutathione. Based on the silver nanoclusters protected by mercaptosuccinic acid, silver-gold alloy nanoclusters were obtained through a gold doping reaction.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP).
View Article and Find Full Text PDFAdv Mater
December 2024
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.
The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China; College of Food Engineering, Ludong University, Yantai, 264025, Shandong, PR China. Electronic address:
Fully excavating and utilizing the rich information presented on bacterial surfaces can open innovative solutions for the multi-mechanism detection of food-borne pathogens. In this work, a colorimetric-fluorescence dual-signal lateral flow immunoassay was used to establish a simultaneous detection strategy integrating five physical, chemical, and biometric combining mechanisms for Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!