The impacts invasive species have on biodiversity and ecosystem function globally have been linked to the higher abundances they often obtain in their introduced compared to native ranges. Higher abundances of invaders in the introduced range are often explained by a reduction in negative species interactions in that range, although results are equivocal. The role of positive interactions in explaining differences in the abundance of invaders between native and invasive ranges has not been tested. Using biogeographic surveys, we showed that the rocky shore porcelain crab, Petrolisthes elongatus, was ~4 times more abundant in its introduced (Tasmania, Australia) compared to its native (New Zealand) range. The habitat of these crabs in the invaded range (underside of intertidal boulders) was extensively covered with the habitat-forming tubeworm Galeolaria caespitosa. We tested whether the habitat provided by the tubeworm facilitates a higher abundance of the invasive crab by creating mimics of boulders with and without the tubeworm physical structure and measured crab colonisation into these habitats at three sites in both Tasmania and New Zealand. Adding the tubeworm structure increased crab abundance by an average of 85% across all sites in both ranges. Our intercontinental biogeographic survey and experiment demonstrate that native species can facilitate invader abundance and that positive interactions can be important drivers of invasion success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156459 | PMC |
http://dx.doi.org/10.1038/s41598-020-63429-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!