Numerous cell types modulate hematopoiesis through soluble and membrane bound molecules. Whether developing hematopoietic progenitors of a particular lineage modulate the differentiation of other hematopoietic lineages is largely unknown. Here we aimed to investigate the influence of myeloid progenitors on CD34 cell differentiation into CD56 innate lymphocytes. Sorted CD34 cells cultured in the presence of stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (FLT3L) give rise to numerous cell types, including progenitors that expressed the prolactin receptor (PRLR). These CD34PRLR myeloid-lineage progenitors were derived from granulocyte monocyte precursors (GMPs) and could develop into granulocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Moreover, CD34PRLR myeloid progenitors lacked lymphoid developmental potential, but when stimulated with prolactin (PRL) they increased the differentiation of other CD34 cell populations into the NK lineage in a non-contact dependent manner. Both mRNA and protein analyses show that PRL increased mothers against decapentaplegic homolog 7 (SMAD7) in CD34PRLR myeloid cells, which reduced the production of transforming growth factor beta 1 (TGF-β1), a cytokine known to inhibit CD56 cell development. Thus, we uncover an axis whereby CD34PRLR GMPs inhibit CD56 lineage development through TGF-β1 production and PRL stimulation leads to SMAD7 activation, repression of TGF-β1, resulting in CD56 cell development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156717 | PMC |
http://dx.doi.org/10.1038/s41598-020-63346-4 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
Background: Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction.
View Article and Find Full Text PDFNat Commun
January 2025
Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.
Before committing to an erythroid cell lineage, hematopoietic stem cells differentiate along a myeloid cell pathway to generate megakaryocyte-erythroid biopotential progenitor cells in bone marrow. Recent studies suggest that erythroid progenitors (EryPs) could be generated at the level of common myeloid progenitors (CMPs). However, due to a lack of suitable markers, little is known about the early differentiation of these committed EryP cells during CMP development.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
GATA2 deficiency is an autosomal dominant germline disorder of immune dysfunction and bone marrow failure with a high propensity for leukemic transformation. While sequencing studies have identified several secondary mutations thought to contribute to malignancy, the mechanisms of disease progression have been difficult to identify due to a lack of disease-specific experimental models. Here, we describe a murine model of one of the most common GATA2 mutations associated with leukemic progression in GATA2 deficiency, Gata2.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Galactophore Department, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China.
Recent studies have shown that Janus Kinase inhibitors can enhance the tumor therapeutic effect of immune checkpoint inhibitors. However, it remains to be studied whether TYK2 selective inhibitors can enhance the therapeutic effect of small molecule PD-L1 inhibitors in triple-negative breast cancer (TNBC). We verified the efficacy of the combination of the selective TYK2 inhibitor Deucravacitinib and the small molecule inhibitor of PD-L1, INCB086550, in two TNBC animal models: a syngeneic mouse model (4T1 with humanized PD-L1) and a peripheral blood mononuclear cell (PBMC)-humanized model (MDA-MB-231).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!