A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generating homogenous cortical preplate and deep-layer neurons using a combination of 2D and 3D differentiation cultures. | LitMetric

Embryonic stem cells (ESCs) can be used to derive different neural subtypes. Current differentiation protocols generate heterogeneous neural subtypes rather than a specific neuronal population. Here, we present a protocol to derive separate two-deep layer cortical neurons from mouse ESCs (mESCs). mESCs were differentiated into mature Tbr1 or Ctip2-positive neurons using a monolayer-based culture for neural induction and neurosphere-based culture for neural proliferation and expansion. The differentiation protocol relies on SMAD inhibition for neural induction and the use of FGF2 and EGF for proliferation and it is relatively short as mature neurons are generated between differentiation days 12-16. Compared with the monolayer-based differentiation method, mESCs can be directed to generate specific deep-layer cortical neurons rather than heterogeneous cortical neurons that are generated using the monolayer differentiation culture. The early analysis of progenitors using flow cytometry, immunocytochemistry, and qRT-PCR showed high neuralization efficiency. The immunocytochemistry and flow cytometry analyses on differentiation days 12 and 16 showed cultures enriched in Tbr1- and Ctip2-positive neurons, respectively. Conversely, the monolayer differentiation culture derived a mixture of Tbr1 and Ctip2 mature neurons. Our findings suggested that implementing a neurosphere-based culture enabled directing neural progenitors to adopt a specific cortical identity. The generated progenitors and neurons can be used for neural-development investigation, drug testing, disease modelling, and examining novel cellular replacement therapy strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156727PMC
http://dx.doi.org/10.1038/s41598-020-62925-9DOI Listing

Publication Analysis

Top Keywords

cortical neurons
12
neurons
9
differentiation
8
neural subtypes
8
ctip2-positive neurons
8
culture neural
8
neural induction
8
neurosphere-based culture
8
mature neurons
8
neurons generated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!