Serious bacterial infections by multi-drug-resistant pathogens lead to human losses and endanger public health. The discovery of antibiotics with new modes of action, in combination with nanotechnology, might offer a promising route to combat multi-drug-resistant pathogens. Platensimycin (PTM), a potent inhibitor of FabB/FabF for bacterial fatty acid biosynthesis, is a promising drug lead against many drug-resistant bacteria. However, the clinical development of PTM is hampered by its poor pharmacokinetics. Herein, we report a nanostrategy that encapsulated PTM in two types of nanoparticles (NPs) poly(lactic--glycolic acid) (PLGA) and poly(amidoamine) (PAMAM) dendrimer to enhance its antibacterial activity and . The PTM-encapsulated NPs were effective to inhibit biofilm formation, and killed more in a macrophage cell infection model over free PTM. The pharmacokinetic studies showed that PTM-loaded PLGA and PAMAM NPs exhibited increased AUC (area under the curve) (∼4- and 2-fold) over free PTM. In a mouse peritonitis model, treatment of methicillin-resistant infected mice using both PTM-loaded NPs (10 mg/kg) by intraperitoneal injection led to their full survival, while all infected mice died when treated by free PTM (10 mg/kg). These results not only suggest that PTM-loaded NPs may hold great potential to improve the poor pharmacokinetic properties of PTM, but support the rationale to develop bacterial fatty acid synthase inhibitors as promising antibiotics against drug-resistant pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.0c00121DOI Listing

Publication Analysis

Top Keywords

free ptm
12
polylactic--glycolic acid
8
multi-drug-resistant pathogens
8
bacterial fatty
8
fatty acid
8
infected mice
8
ptm-loaded nps
8
ptm
7
nps
5
platensimycin-encapsulated polylactic--glycolic
4

Similar Publications

Comprehensive analysis of protein post-translational modifications reveals PTPN2-STAT1-AOX axis-mediated tumor progression in hepatocellular carcinomas.

Transl Oncol

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, China; Zhejiang University Cancer Center, Hangzhou, China. Electronic address:

Hepatocellular carcinoma (HCC) is a common malignant tumor. Although the proteomics of HCC is well studied, the landscape of post-translational modifications (PTMs) in HCC is poorly understood. The PTMs themselves and their crosstalk might be deeply involved in HCC development and progression.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Methyl-coenzyme M reductase (MCR), the key catalyst in the anoxic production and consumption of methane, contains an unusual 2-methylglutamine residue within its active site. data show that a B12-dependent radical SAM (rSAM) enzyme, designated MgmA, is responsible for this post-translational modification (PTM). Here, we show that two different MgmA homologs are able to methylate MCR when expressed in , an organism that does not normally possess this PTM.

View Article and Find Full Text PDF

Sulfonated albumin from hepatocytes accelerates liver fibrosis in nonalcoholic fatty liver disease through endoplasmic reticulum stress.

Free Radic Biol Med

December 2024

Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. Electronic address:

Article Synopsis
  • The study investigates the role of sulfonated albumin as a modification in nonalcoholic fatty liver disease (NAFLD), focusing on its sources and effects on liver fibrosis.
  • Researchers found higher levels of sulfonated albumin in both human and mouse serum samples with NAFLD, and its injection in mice worsened liver conditions.
  • The mechanism involves hepatocyte-derived sulfonated albumin activating hepatic stellate cells through the GAL3 receptor, promoting liver fibrosis and suggesting its potential as a diagnostic marker and treatment target for NAFLD.
View Article and Find Full Text PDF

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!