Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments.

J Tissue Eng Regen Med

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.

Published: June 2020

With the rise of obesity, diabetes, and other metabolic diseases, in vitro hepatic cell and tissue models play an essential role in the identification of active pharmaceutical ingredients. Up to now, three-dimensional (3D) culture models have rarely focused on hepatic glucose and lipid metabolism. In addition, primary human liver cells suffer from limited availability and interdonor difference for establishing reproducible models. Thus, in the current study, the most available human liver cancer cell line (HepG2) and primary hepatocytes from rats (rPH) were proposed to construct 3D spheroids using injectable fiber fragments with galactose grafts (gSF) as the substrate. rPH and HepG2 spheroids show strong cell-cell and cell-fiber fragment interactions to promote the cell viability, albumin, and urea syntheses. Compared with HepG2 spheroids, rPH spheroids indicate stronger glucose metabolism abilities in terms of glucose consumption, intracellular glycogen content, gluconeogenesis rate, and sensitivity to glucose modulator hormones like insulin and glucagon. On the other hand, HepG2 spheroids display strong lipid metabolism abilities in producing significantly higher levels of total cholesterol and triglyceride. Compared with those without fiber fragments, the gSF-supported 3D culture establishes effective models for in vitro glucose (rPH spheroids) and lipid metabolisms (HepG2 spheroids). The screening models are confirmed from the respective enzyme activities and gene expressions and show significantly higher sensitivity and clinically related responses to hypoglycemic and lipid-lowering drugs. Thus, the culture configuration demonstrates a predictable in vitro platform for defining glucose and lipid metabolism profiles and screening therapeutic agents for metabolism disorders like diabetes and obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.3042DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
16
hepg2 spheroids
16
glucose lipid
12
fiber fragments
12
screening models
8
spheroids
8
injectable fiber
8
human liver
8
rph spheroids
8
metabolism abilities
8

Similar Publications

Background: GPR171 suppresses T cell immune responses involved in antitumour immunity, while its role in inflammatory bowel disease (IBD) pathogenesis remains unclear.

Objective: We aimed to investigate the role of GPR171 in modulating CD4 T cell effector functions in IBD and evaluate its therapeutic potential.

Design: We analysed GPR171 expression in colon biopsies and peripheral blood samples from patients with IBD and assessed the impact of GPR171 on CD4 T cell differentiation through administration of its endogenous ligand (BigLEN).

View Article and Find Full Text PDF

In vitro study of a siRNA delivery liposome constructed with an ionizable cationic lipid.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Pharmaceutical Engineering, Chemistry and Chemical Engineering, Central South University, Changsha 410083.

Objectives: Small interfering RNA (siRNA) can silence disease-related genes through sequence-specific RNA interference (RNAi). Cationic lipid-based liposomes effectively deliver nucleic acids into the cytoplasm but often exhibit significant toxicity. This study aims to synthesize a novel ionizable lipid, Nε-laruoyl-lysine amide (LKA), from natural amino acids, constructed LKA-based liposomes, and perform physicochemical characterization and cell-based experiments to systematically evaluate the potential of these ionizable lipid-based liposomes for nucleic acid delivery.

View Article and Find Full Text PDF

Mitochondrial ACSS1-K635 acetylation knock-in mice exhibit altered liver lipid metabolism on a ketogenic diet.

Free Radic Biol Med

March 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies at UT Health San Antonio, TX, USA. Electronic address:

Acetyl-CoA Synthetase Short Chain Family Member-1 (ACSS1) catalyzes the ligation of acetate and coenzyme A to generate acetyl-CoA in the mitochondria to produce ATP through the tricarboxylic acid (TCA) cycle. We recently generated an ACSS1-acetylation (Ac) mimic knock-in mouse, where lysine 635 was mutated to glutamine (K635Q), which structurally and biochemically mimics an acetylated lysine. ACSS1 enzymatic activity is regulated, at least in part, through the acetylation of lysine 635 in mice (lysine 642 in humans), a Sirtuin 3 deacetylation target.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is characterized by insulin resistance and defective insulin secretion. Previously, we found that rats fed soft pellets (SPs) on a 3-hour restricted schedule over 14 weeks demonstrated glucose intolerance and insulin resistance with disruption of insulin signaling.

Objective: To determine (1) the time required for an SP diet to induce insulin resistance, and (2) whether the metabolic derangements in rats fed SPs can be reversed by changing to a standard control diet.

View Article and Find Full Text PDF

Synergistic regulation of colon microflora and metabolic environment by resistant starch and sodium lactate in hyperlipidemic rats.

Int J Biol Macromol

March 2025

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Type 3 resistant starch (RS3) regulates diet-related metabolic diseases by promoting intestinal short-chain fatty acids (SCFAs) and lactate production, and facilitating microbial lactate-to-butyrate fermentation. However, its precise in vivo mechanism remains unclear. Therefore, we studied the effects of type 3 lotus seed resistant starch (LRS3) and sodium lactate (SL) on colonic microbiota composition, metabolism, and lipid parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!