Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide-free hard magnets. Zero- and one-dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom-up nature of their synthesis. Here, we present two one-dimensional cobalt(II) systems Co(hfac) (R-NapNIT) (R-NapNIT=2-(2'-(R-)naphthyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, R=MeO or EtO) supported by air-stable nitronyl nitroxide radicals. These compounds are single-chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three-dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202002673DOI Listing

Publication Analysis

Top Keywords

coercive fields
8
magnetic
5
fields 6 t
4
6 t cobaltii-radical
4
cobaltii-radical chain
4
chain compounds
4
compounds lanthanide
4
lanthanide permanent
4
permanent magnets
4
magnets applications
4

Similar Publications

Ultrahigh Exchange Bias Field/Coercive Field Ratio in In Situ Formed Two-Dimensional Magnetic Te-CrO/CrTe Heterostructures.

Adv Mater

January 2025

Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.

The exchange bias (EB) effect is a fundamental magnetic phenomenon, in which the exchange bias field/coercive field ratio (|H/H|) can improve the stability of spintronic devices. Two-dimensional (2D) magnetic heterostructures have the potential to construct low-power and high-density spintronic devices, while their typically air unstable and |H/H| lesser, limiting the possibility of applications. Here, 2D CrTe nanosheets have been systematically synthesized with an in situ formed ≈2 nm-thick Te doped CrO layer (Te-CrO) on the upper surface by chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Advancing Room-Temperature Magnetic Semiconductors with Organic Radical Charge Transfer Cocrystals.

Adv Mater

January 2025

Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.

Developing purely organic room-temperature magnetic semiconductors has been a long-sought goal in the material community toward the simultaneous control of spin and charge. Organic cocrystals, known for their structural versatility and multifunctionality, are ideal candidates for these magnetoelectric coupling applications. However, organic room-temperature magnetic semiconductor cocrystals have rarely been reported, and their mechanisms remain poorly understood due to the complexity of cocrystal structures.

View Article and Find Full Text PDF

In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.

View Article and Find Full Text PDF

Individual variation in stress coping styles is widespread and consequential to health and fitness. Proactive (bold behavior, low stress reactivity, low cognitive flexibility) and reactive (shy behavior, high stress reactivity, high cognitive flexibility) coping styles are found in many species, but the developmental forces shaping them remain elusive. We examined how social influences, specifically mating interactions, shape the development of adult female coping styles with a manipulative rearing experiment using El Abra swordtails, Xiphophorus nigrensis.

View Article and Find Full Text PDF

Institutional logics, social interactions and management of tensions in public-private partnership organizations.

J Health Organ Manag

January 2025

Department of International Trade and Finance, Faculty of Economics, Administrative and Social Sciences, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye.

Purpose: We aim to understand the link between field-level institutional logics and practice-level social interactions and relationships between public and private actors and their influences on the responses and resolutions to the issues causing tensions.

Design/methodology/approach: Adopting a multiple logics perspective with a focus on social interactions and relationships between public and private actors, we conducted a multiple case study in five city hospitals recently established under a public-private partnership model in the Turkish healthcare field.

Findings: We found that the state and market logics that predominantly characterize the Turkish healthcare field were enacted in each of the five hospitals in different manners and constitute three different configurations as compatible, complementary and contradictory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!