Temperature-driven n-p conduction type switching without structural transition in a Cu-rich chalcogenide, NaCuS.

Chem Commun (Camb)

The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Published: May 2020

We report for the first time the discovery of reversible n-p conduction type switching in a chalcogenide, NaCu5S3, without structural transition. AC impedance and first-principles simulations of the ionic migration confirmed the local melting trends of the hexagonal copper lattice at high temperatures, which could result in superionic conductivity within NaCu5S3.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc01429jDOI Listing

Publication Analysis

Top Keywords

n-p conduction
8
conduction type
8
type switching
8
structural transition
8
temperature-driven n-p
4
switching structural
4
transition cu-rich
4
cu-rich chalcogenide
4
chalcogenide nacus
4
nacus report
4

Similar Publications

Forest ecosystem nutrient cycling functions are the basis for the survival and development of organisms, and play an important role in maintaining the forest structural and functional stability. However, the response of forest nutrient cycling functions at the ecosystem level to whole-tree harvesting remains unclear. Herein, we calculated the ecosystem nitrogen (N), phosphorus (P), and potassium (K) absorption, utilization, retention, cycle, surplus, accumulation, productivity, turnover and return parameters and constructed N, P, and K cycling function indexes to identify the changes in ecosystem N, P, and K cycling functions in a secondary forest in the Qinling Mountains after 5 years of five different thinning intensities (0% (CK), 15%, 30%, 45%, and 60%).

View Article and Find Full Text PDF

Introduction: Glutathione S-transferase (GST) has the ability to detoxify the cellular environment of xenobiotic compounds and by-products of oxidative stress. The expression levels of GST genes and their polymorphisms are associated with various human diseases. Methamphetamine and opiate addiction also account for a significant proportion of SUDs in Iran.

View Article and Find Full Text PDF

Growth and yield reduction of crops due to salt stress have become a serious issue worldwide. is very well known as a plant growth-promoting fungi under abiotic stress conditions. Therefore, this study was designed to investigate the effect of on the growth, yield, nutrient uptake, and antioxidant activity of three Indian mustard genotypes under saline condition (EC 9.

View Article and Find Full Text PDF

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

A global analysis of plant nutrient limitation affected by atmospheric nitrogen and phosphorous deposition.

Front Plant Sci

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China.

Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!