A unique phenylboronic acid-catalyzed dimerization-sulfonylation of S-benzyl thiosulfonates has been disclosed. A metal-free tandem construction of S-S and C-S bonds is an operationally simple method to access a wide range of benzyl disulfanylsulfone derivatives in high to excellent yields. Moreover, the robustness of this tandem transformation has been demonstrated by gram-scale reactions, and a plausible mechanism is also proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ob00442aDOI Listing

Publication Analysis

Top Keywords

phenylboronic acid-catalyzed
8
tandem construction
8
construction s-s
8
s-s c-s
8
c-s bonds
8
benzyl disulfanylsulfone
8
disulfanylsulfone derivatives
8
s-benzyl thiosulfonates
8
acid-catalyzed tandem
4
bonds method
4

Similar Publications

A unique phenylboronic acid-catalyzed dimerization-sulfonylation of S-benzyl thiosulfonates has been disclosed. A metal-free tandem construction of S-S and C-S bonds is an operationally simple method to access a wide range of benzyl disulfanylsulfone derivatives in high to excellent yields. Moreover, the robustness of this tandem transformation has been demonstrated by gram-scale reactions, and a plausible mechanism is also proposed.

View Article and Find Full Text PDF

Layered double hydroxide (LDH)-supported Pd nanocatalysts (Pd/LDH-OH) were prepared by ultrasonic-assisted reduction at 30 °C using an ultrasonic bath at a frequency of 25 kHz and an input power of 400 W for 30 min without the addition of any stabilizing reagent or chemical reductant, using LDH with a layered structure and interparticle mesoporosity as the reductant and carrier. This kind of pore structure allows ultrasound waves to spread inside the pore and make ultrasound directly act on the surface hydroxyl groups of LDH, producing highly reductive free radicals (H). The reductive free radicals rapidly reduced Pd to Pd, forming ultrafine Pd nanoparticles (PdNPs) with a particle size distribution of 1.

View Article and Find Full Text PDF

2,4-Bis(trifluoromethyl)phenylboronic acid is a highly effective catalyst for dehydrative amidation between carboxylic acids and amines. Mechanistic studies suggest that a 2 : 2 mixed anhydride is expected to be the only active species, and the ortho-substituent of boronic acid plays a key role in preventing the coordination of amines to the boron atom of the active species, thus accelerating the amidation. This catalyst works for α-dipeptide synthesis.

View Article and Find Full Text PDF

Local collection, reaction and analysis with theta pipette emitters.

Analyst

May 2017

Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.

A mobile nanofluidic device based on theta pipettes was developed for "collect-react-analyze" measurements of small volumes of a sample collected locally from biological samples. Specifically, we demonstrate execution of local reactions inside single cells and on Pseudomonas aeruginosa biofilms for targeted analysis of metabolites. Nanoliter volumes of the sample, post-reaction, were delivered to a mass spectrometer via electrospray ionization (ESI) for chemical analysis.

View Article and Find Full Text PDF

Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction is a significant reaction for obtaining industrially important products. The current research work deals with intensification of reaction of 4-bromoanisole and phenylboronic acid catalyzed with 5wt% Pd/C (5% by weight Pd supported on C available as commercial catalyst) using ultrasound and more importantly, without use of any additional phase transfer catalyst. Heterogeneous catalyst has been selected in the present work so as to harness the benefits of easy separation and the possible limitations of heterogeneous operation are minimized by introducing ultrasonic irradiations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!