Yellow onion waste from industrial peeling was used to obtain three pure preparations: protocatechuic acid (PA), quercetin diglycosides (QD) and quercetin monoglycosides (QM). PA contained 61% protocatechuic acid, QD contained 35% quercetin diglucosides, mainly quercetin-3,4'-diglucoside, and QM contained 41% monoglucosides, mainly quercetin-4'-glucoside. The highest antioxidant activity was shown by PA. The effects of preparations on the digestive functions of the gastrointestinal tract of rats as well as the biochemical parameters and antioxidant capacity of the blood in model research on Wistar rats sustained by a high-fat diet were assessed (5 groups per 8 animals). The results of the present experiment showed that different onion phenolic preparations differently modulated the enzymatic activity of faecal (P < 0.001) and caecal (P < 0.001) microbiota. For instance, the QD preparation but not QM efficiently reduced the faecal and caecal bacterial β-glucuronidase activity. Both protocatechuic acid and quercetin monoglycosides showed a beneficial effect by regulating blood lipids (reduction of TC (P < 0.001) and TG (P < 0.001), non-HDL increase in HDL (P < 0.001)), thereby lowering the risk factors for atherosclerotic lesions AI (P = 0.038) and AII (P = 0.013). In addition, onion phenols showed a strong antioxidant effect, however, with a different mechanism: protocatechuic acid via serum ACL (P = 0.033) increase and hepatic GSSG (P = 0.070) decrease, QM via ACW (P < 0.001) increase and hepatic TBARS (P = 0.002) decrease, and QD via serum ACW increase and hepatic GSSG decrease. It can be concluded that onion polyphenols with a lower molar weight, i.e. QM more preferably affect the blood lipid profile than QD. However QD more efficiently reduced the faecal and caecal bacterial β-glucuronidase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fo02633aDOI Listing

Publication Analysis

Top Keywords

protocatechuic acid
20
acid quercetin
12
increase hepatic
12
quercetin monoglycosides
8
efficiently reduced
8
reduced faecal
8
faecal caecal
8
caecal bacterial
8
bacterial β-glucuronidase
8
β-glucuronidase activity
8

Similar Publications

Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.).

Food Chem

December 2024

Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:

Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.

View Article and Find Full Text PDF

Black rice bran (BRB), a valuable byproduct from the rice milling process, possesses numerous pharmacological activities, including antioxidant potential, but information regarding highly efficient extraction methods is scarce. To enhance the extraction efficiency, ultrasonic-assisted extraction coupled with Box-Behnken design (BBD) was used in this study to maximize the total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), and antioxidant capacity of BRB extract. The BBD results showed that 57% ethanol at 50°C and pH 3.

View Article and Find Full Text PDF

Objective: To detect phenolic acid compounds in various fruits and explore the differences in phenolic acids among different types of fruits.

Methods: The collected 75 types of fruits were classified into 6 categories: citrus、melon、drupe、berry、tropical fruit and pome fruits. The phenolic acid compounds were detected by high performance liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

The medicinal fungus Phellinus Igniarius (P. igniarius) has been demonstrated to possess a variety of pharmacological effects, including anti-oxidant, anti-tumor, blood circulation promotion, anti-diarrheal and sedative properties, etc. In order to gain a deeper understanding of the components in P.

View Article and Find Full Text PDF

Background: α-Amylase (α-AMY) and α-glucosidase (α-GLU) inhibitors are important for controlling postprandial hyperglycemia (PHG). Bixa orellana (annatto) reported inhibitory activity against these enzymes because of its bioactive compound content. However, an understanding of its inhibitory mechanisms and metabolic profile is necessary to establish its therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!