A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring feature selection and classification methods for predicting heart disease. | LitMetric

Machine learning has been used successfully to improve the accuracy of computer-aided diagnosis systems. This paper experimentally assesses the performance of models derived by machine learning techniques by using relevant features chosen by various feature-selection methods. Four commonly used heart disease datasets have been evaluated using principal component analysis, Chi squared testing, ReliefF and symmetrical uncertainty to create distinctive feature sets. Then, a variety of classification algorithms have been used to create models that are then compared to seek the optimal features combinations, to improve the correct prediction of heart conditions. We found the benefits of using feature selection vary depending on the machine learning technique used for the heart datasets we consider. However, the best model we created used a combination of Chi-squared feature selection with the BayesNet algorithm and achieved an accuracy of 85.00% on the considered datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133070PMC
http://dx.doi.org/10.1177/2055207620914777DOI Listing

Publication Analysis

Top Keywords

feature selection
12
machine learning
12
heart disease
8
exploring feature
4
selection classification
4
classification methods
4
methods predicting
4
heart
4
predicting heart
4
disease machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!