In two-dimensional materials research, oxidation is usually considered as a common source for the degradation of electronic and optoelectronic devices or even device failure. However, in some cases a controlled oxidation can open the possibility to widely tune the band structure of 2D materials. In particular, we demonstrate the controlled oxidation of titanium trisulfide (TiS), a layered semicon-ductor that has attracted much attention recently thanks to its quasi-1D electronic and optoelectron-ic properties and its direct bandgap of 1.1 eV. Heating TiS in air above 300 °C gradually converts it into TiO, a semiconductor with a wide bandgap of 3.2 eV with applications in photo-electrochemistry and catalysis. In this work, we investigate the controlled thermal oxidation of indi-vidual TiS nanoribbons and its influence on the optoelectronic properties of TiS-based photodetec-tors. We observe a step-wise change in the cut-off wavelength from its pristine value ~1000 nm to 450 nm after subjecting the TiS devices to subsequent thermal treatment cycles. Ab-initio and many-body calculations confirm an increase in the bandgap of titanium oxysulfide (TiOS) when in-creasing the amount of oxygen and reducing the amount of sulfur.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221968 | PMC |
http://dx.doi.org/10.3390/nano10040711 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!