A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acetylation of Phenylalanine Hydroxylase and Tryptophan 2,3-Dioxygenase Alters Hepatic Aromatic Amino Acid Metabolism in Weaned Piglets. | LitMetric

Acetylation of Phenylalanine Hydroxylase and Tryptophan 2,3-Dioxygenase Alters Hepatic Aromatic Amino Acid Metabolism in Weaned Piglets.

Metabolites

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Published: April 2020

Weaning significantly alters hepatic aromatic amino acid (AAA) metabolism and physiological functions. However, less is known about the regulating mechanism of hepatic AAA metabolism after weaning. A total of 200 21-day-old piglets (Duroc × Landrace) were assigned randomly to the control group and the weaning group. In this study, weaning significantly decreased the concentration of phenylalanine, tryptophan, and tyrosine in piglet livers ( < 0.05). Additionally, through the detection of liver AAA metabolites and metabolic enzyme activity, it was observed that hepatic tryptophan catabolism was enhanced, while that of phenylalanine was weakened ( < 0.05). Intriguingly, acetyl-proteome profiling of liver from weaned piglets showed that weaning exacerbated the acetylation of phenylalanine hydroxylase (PAH) and the deacetylation of tryptophan 2,3-dioxygenase (TDO). Analysis of PAH and TDO acetylation in Chang liver cells showed that acetylation decreased the PAH activity, while deacetylation increased the TDO activity ( < 0.05). Furthermore, metabolites of AAAs and the acetylation statuses of PAH and TDO in primary hepatocytes from weaned piglets were consistent with the results . These findings indicated that weaning altered the PAH and TDO activity by affecting the acetylation state of the enzyme in piglets'' livers. Lysine acetylation may be a potential regulatory mechanism for AAA metabolism in response to weaning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240952PMC
http://dx.doi.org/10.3390/metabo10040146DOI Listing

Publication Analysis

Top Keywords

weaned piglets
12
aaa metabolism
12
pah tdo
12
acetylation phenylalanine
8
phenylalanine hydroxylase
8
tryptophan 23-dioxygenase
8
alters hepatic
8
hepatic aromatic
8
aromatic amino
8
amino acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!