Metallic implants show dose-modulating effects in radiotherapy and complicate its computed tomography (CT)-based planning. Dose deviations might not only affect the surrounding tissues due to backscattering and inadvertent dose increase but might also compromise the therapeutic effect to the target lesion due to beam attenuation. Later on, follow-up imaging is often obscured by metallic artefacts. This study investigates the dosimetric impact of titanium and radiolucent carbon fiber/polyether ether ketone (CF/PEEK) implants during adjuvant radiation therapy in long bones. (1) Does the use of CF/PEEK implants allow for a more homogenous application of radiation? (2) Is the dose delivery to the target volume more efficient when using CF/PEEK implants? (3) Do CF/PEEK implants facilitate CT-based radiation therapy planning? After CT-based planning, bone models of six ovine femora were irradiated within a water phantom in two immersion depths to simulate different soft-tissue envelopes. Plates and intramedullary nails of both titanium and CF/PEEK were investigated. Radiation dosage and distribution patterns were mapped using dosimetry films. First, the planned implant-related beam attenuation was lower for the CF/PEEK plate (1% vs. 5%) and the CF/PEEK nail (2% vs. 9%) than for corresponding titanium implants. Secondly, the effective decrease of radiation dosage behind the implants was noticeably smaller when using CF/PEEK implants. The radiation dose was not significantly affected by the amount of surrounding soft tissues. A significant imaging artefact reduction was seen in all CF/PEEK models. CF/PEEK implants lead to a more reliable and more effective delivery of radiation dose to an osseous target volume. With regard to radiation therapy, the use of CF/PEEK implants appears to be particularly beneficial for intramedullary nails.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178689 | PMC |
http://dx.doi.org/10.3390/ma13071754 | DOI Listing |
Adv Mater
October 2024
Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China.
Addressing osteoporosis-related bone defects, a supramolecular strategy is innovated for modifying carbon fiber reinforced polyether ether ketone (CF/PEEK) composites. By covalently attaching intelligent macromolecules via in situ RAFT polymerization, leveraging the unique pathological microenvironment in patients with iron-overloaded osteoporosis, intelligent supramolecular modified implant surface possesses multiple endogenous modulation capabilities. After implantation, surface brush-like macromolecules initially resist macrophage adhesion, thereby reducing the level of immune inflammation.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
August 2024
Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
Secondary healing of fractured bones requires an application of an appropriate fixator. In general, steel or titanium devices are used mostly. However, in recent years, composite structures arise as an attractive alternative due to high strength to weight ratio and other advantages like, for example, radiolucency.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
June 2024
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
Mesenchymal stem cells (MSCs) are increasingly becoming a potential treatment approach for bone injuries due to the multi-lineage differentiation potential, ability to recognize damaged tissue sites and secrete bioactive factors that can enhance tissue repair. The aim of this work was to improve osteogenesis of carbon fibers reinforced polyetheretherketone (CF/PEEK) implants through bone marrow mesenchymal stem cells (BMSCs)-based therapy. Moreover, bioactive graphene oxide (GO) was introduced into CF/PEEK by grafting GO onto CF to boost the osteogenic efficiency of BMSCs.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2023
Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, China.
Surgery for bone tumors around the knee often involves extensive resection, making the subsequent prosthetic reconstruction challenging. While carbon fiber-reinforced polyetheretherketone (CF-PEEK) has been widely used in orthopedic implants, its application in tumor-type prosthesis is limited. This study aims to evaluate the feasibility of using 30wt% and 60wt% carbon fiber-reinforced polyetheretherketone (CF30-PEEK and CF60-PEEK) as materials for a redesigned tumor-type knee prosthesis through numerical analysis.
View Article and Find Full Text PDFJ Orthop
November 2023
Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital Boston, MA, 02114, USA.
Introduction: The use of carbon fiber implants in orthopaedic oncology has increased within recent years. The most widely used type of polymer is carbon fiber polyether ether ketone (CF-PEEK). Its radiolucency enables targeted radiotherapy and artifact-free tumor surveillance, which provides major advantages over metallic hardware.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!