Keratin Dynamics and Spatial Distribution in Wild-Type and K14 R125P Mutant Cells-A Computational Model.

Int J Mol Sci

Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.

Published: April 2020

Keratins are one of the most abundant proteins in epithelial cells. They form a cytoskeletal filament network whose structural organization seriously conditions its function. Dynamic keratin particles and aggregates are often observed at the periphery of mutant keratinocytes related to the hereditary skin disorder epidermolysis bullosa simplex, which is due to mutations in keratins 5 and 14. To account for their emergence in mutant cells, we extended an existing mathematical model of keratin turnover in wild-type cells and developed a novel 2D phase-field model to predict the keratin distribution inside the cell. This model includes the turnover between soluble, particulate and filamentous keratin forms. We assumed that the mutation causes a slowdown in the assembly of an intermediate keratin phase into filaments, and demonstrated that this change is enough to account for the loss of keratin filaments in the cell's interior and the emergence of keratin particles at its periphery. The developed mathematical model is also particularly tailored to model the spatial distribution of keratins as the cell changes its shape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177522PMC
http://dx.doi.org/10.3390/ijms21072596DOI Listing

Publication Analysis

Top Keywords

keratin
8
spatial distribution
8
keratin particles
8
mathematical model
8
model
6
keratin dynamics
4
dynamics spatial
4
distribution wild-type
4
wild-type k14
4
k14 r125p
4

Similar Publications

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Objective: This study aimed to identify structural changes in age-related curved hair (referred to as "YUGAMI" hair in Japanese) induced by cyclical extension using infrared (IR) spectroscopy coupled with chemometrics, such as multivariate curve resolution (MCR) and two-dimensional correlation spectroscopy (2DCOS).

Methods: The hair fibres were stretched at a strain level of 0.3-N, and this operation was counted as one cycle and was repeated 500 cycles.

View Article and Find Full Text PDF

Objective: Vulvar squamous cell carcinoma (VSCC) can be either HPV-dependent (HPVd) or HPV-independent (HPVi). HPVd VSCC typically occurs in younger women, has a more favorable prognosis, and develops from high-grade squamous intraepithelial lesions (HSIL). HPVi VSCC predominantly affects older women and arises within areas of chronic inflammation, particularly lichen sclerosis (LS).

View Article and Find Full Text PDF

Surgically facilitated orthodontics with clear aligners for severe malocclusion and gingival recessions.

Clin Adv Periodontics

January 2025

Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, New York, USA.

Background: Gingival recession defects (GRDs) pose functional and esthetic concerns and may be associated with unfavorable tooth positions. Surgically facilitated orthodontic treatment (SFOT) with clear aligners can be a valuable option for adults with severe malocclusion and GRDs.

Methods: A 28-year-old male presented with severe dental crowding, Class III dental malocclusion, localized tooth crossbites, and tapered maxillary arch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!