In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers.

iScience

Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy. Electronic address:

Published: April 2020

Engineering protein-based biomaterials is extremely challenging in bioelectronics, medicine, and materials science, as mechanical, electrical, and optical properties need to be merged to biocompatibility and resistance to biodegradation. An effective strategy is the engineering of physiological processes in situ, by addition of new properties to endogenous components. Here we show that a green fluorescent semiconducting thiophene dye, DTTO, promotes, in vivo, the biogenesis of fluorescent conductive protein microfibers via metabolic pathways. By challenging the simple freshwater polyp Hydra vulgaris with DTTO, we demonstrate the stable incorporation of the dye into supramolecular protein-dye co-assembled microfibers without signs of toxicity. An integrated multilevel analysis including morphological, optical, spectroscopical, and electrical characterization shows electrical conductivity of biofibers, opening the door to new opportunities for augmenting electronic functionalities within living tissue, which may be exploited for the regulation of cell and animal physiology, or in pathological contexts to enhance bioelectrical signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155203PMC
http://dx.doi.org/10.1016/j.isci.2020.101022DOI Listing

Publication Analysis

Top Keywords

fluorescent conductive
8
in vivo bioengineering
4
bioengineering fluorescent
4
conductive protein-dye
4
protein-dye microfibers
4
microfibers engineering
4
engineering protein-based
4
protein-based biomaterials
4
biomaterials extremely
4
extremely challenging
4

Similar Publications

L-ICG as an optical agent to improve intraoperative margin detection in breast-conserving surgery: a prospective study.

Breast Cancer Res Treat

January 2025

Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Waima Road 114, Jinping District, Shantou, 515041, China.

Purpose: Precise tumor excision is important in breast-conserving surgery (BCS). This study explores the safety and accuracy of fluorescence image-guided BCS (FIGS) using a lidocaine mucilage-ICG compound (L-ICG).

Methods: 54 patients who underwent BCS from August 2020 to September 2023 were enrolled.

View Article and Find Full Text PDF

This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.

View Article and Find Full Text PDF

Mapping Dynamic Protein Clustering with AIEgen-Active Chemigenetic Probe.

Angew Chem Int Ed Engl

January 2025

East China University of Science and Technology, Insitute of Fine Chemicals, Meilong Road 130, Shanghai, China, 200237, Shanghai, CHINA.

Protein clustering/disassembling is a fundamental process in biomolecular condensates, playing crucial roles in cell fate decision and cellular homeostasis. However, the inherent features of protein clustering, especially for its reversible behavior and subtle microenvironment variation, present significant hurdles in probe chemistry for tracking protein clustering dynamics. Herein, we report a bilateral-tailored chemigenetic probe, in which an "amphiphilic" AIEgen QMSO3Cl is covalently conjugated to a protein tag that is genetically fused to protein-of-interest (POI).

View Article and Find Full Text PDF

Lipophilic molecular rotor to assess the viscosity of oil core in nano-emulsion droplets.

Soft Matter

January 2025

INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France.

Characterization of nanoscale formulations is a continuous challenge. Size, morphology and surface properties are the most common characterizations. However, physicochemical properties inside the nanoparticles, like viscosity, cannot be directly measured.

View Article and Find Full Text PDF

Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.

Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!