A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

One-step fabrication of trimetallic alloy nanozyme catalyzer for luminol-HO chemiluminescence and its application for miRNA-21 detection coupled with miRNA walking machine. | LitMetric

One-step fabrication of trimetallic alloy nanozyme catalyzer for luminol-HO chemiluminescence and its application for miRNA-21 detection coupled with miRNA walking machine.

J Pharm Biomed Anal

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber Plastics, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:

Published: July 2020

PtCuCo trimetallic alloys (PtCuCo-TAs) are synthesized by one-step reduction. The chemiluminescence (CL) properties of PtCuCo-TAs are studied systemically. PtCuCo-TAs show good catalyzing for luminol-HO system. A CL platform is developed for the detection of miRNA-21 using PtCuCo-TAs as nanozyme catalyzer. In the CL detection platform, H1 (Hairpin DNA1) is immobilized onto magnetic beads (MBs) firstly. In the presence of miRNA-21, H1 is opened. H2 (Hairpin DNA2) then hybridizes with H1. Meanwhile, a "cleat" in the end of miRNA-21 with a fewer bases complementary is formed to prevent miRNA-21 dissociating from H1. This miRNA-21 hybridizes to another H1. When cpDNA-PtCuCo-TAs which consisted with cDNA (Complementary strand of probe DNA) and pDNA-PtCuCo-TAs (PtCuCo-TAs labeled with probe DNA) are added, the ssDNA region of H1 reacts with the toehold domain of probe DNA and cDNA is released resulting pDNA-PtCuCo-TAs being captured. With this process repeatedly, a lot of pDNA-PtCuCo-TAs are captured onto MBs. After separation and washing, the precipitate and HO are put into the 96-well and luminol solution is injected. The CL signal is produced by PtCuCo-TAs catalyzing luminol-HO system. The amount of miRNA-21 is detected with CL signal. This CL platform performs with limit of detection 0.167 fM and has good selectivity over other RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2020.113280DOI Listing

Publication Analysis

Top Keywords

probe dna
12
nanozyme catalyzer
8
catalyzing luminol-ho
8
luminol-ho system
8
pdna-ptcuco-tas captured
8
mirna-21
6
ptcuco-tas
6
one-step fabrication
4
fabrication trimetallic
4
trimetallic alloy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!