Objectives: MicroRNAs have been considered to be closely related with the development of severe acute pancreatitis (SAP), and microRNA-375 (miR-375) was believed to be a marker of SAP. We aim to investigate the role of miR-375 in regulating SP.

Methods: Cerulein and lipopolysaccharide were used to establish the models of SAP. AR42J cell line was chosen for study in vitro. Flow cytometry was applied for assessing apoptosis. The contents of inflammatory factors were detected with related enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction assays. Hematoxylin and eosin staining was applied to observe the pathological changes of pancreatic tissues. Immunohistochemistry analysis was conducted for investigating the expression of light chain 3.

Results: The level of miR-375 in pancreatitis tissues and cell lines was upregulated. Overexpression of miR-375 promoted inflammation and the apoptosis of acinar cells through inhibiting autophagy. The binding site between miR-375 and ATG7 was identified, and miR-375 could directly regulate the ATG7. microRNA-375 suppressed autophagy and promoted inflammation and the apoptosis of acinar cells via targeting ATG7.

Conclusions: We proved that miR-375 could inhibit autophagy and promote inflammation and the apoptosis of acinar cells through regulating ATG7. This study first proves that miR-375 modulates the development of SAP through targeting ATG7.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPA.0000000000001536DOI Listing

Publication Analysis

Top Keywords

inflammation apoptosis
16
apoptosis acinar
16
acinar cells
16
mir-375
9
cells targeting
8
targeting atg7
8
promoted inflammation
8
apoptosis
5
atg7
5
mir-375 inhibits
4

Similar Publications

Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (HR) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma.

View Article and Find Full Text PDF

Long non-coding RNA TMC3-AS1 is identified to be upregulated by lipopolysaccharide (LPS) in inflammatory disease, but its role in acute kidney injury (AKI) is almost unknown. The study investigated the involvement of TMC3-AS1 in LPS-induced AKI and its downstream molecular regulatory mechanism. Our data suggested that knocking down TMC3-AS1 significantly reduced renal dysfunction, tissue inflammation and tissue damage in LPS-induced mice, and promoted cell viability, inhibited inflammation, apoptosis and necrosis in LPS-stimulated human renal tubular epithelial cells HK2.

View Article and Find Full Text PDF

Objective:  Septic acute lung injury (ALI) is a common complication of sepsis with high morbidity and mortality but lacks specific treatment. This study aimed to elucidate the role of circular RNA TLK1 (circTLK1) in neonatal septic ALI.

Study Design:  Murine cecal slurry was used to induce neonatal sepsis-induced ALI model in vivo.

View Article and Find Full Text PDF

p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation.

Inflammation

December 2024

Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.

The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia.

View Article and Find Full Text PDF

Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!