A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thymoquinone Glucuronide Conjugated Magnetic Nanoparticle for Bimodal Imaging and Treatment of Cancer as a Novel Theranostic Platform. | LitMetric

Background: Theranostic oncology combines therapy and diagnosis and is a new field of medicine that specifically targets the disease by using targeted molecules to destroy the cancerous cells without damaging the surrounding healthy tissues.

Objective: We aimed to develop a tool that exploits enzymatic TQ release from glucuronide (G) for the imaging and treatment of lung cancer. We added magnetic nanoparticles (MNP) to enable magnetic hyperthermia and MRI, as well as 131I to enable SPECT imaging and radionuclide therapy.

Methods: A glucuronide derivative of thymoquinone (TQG) was enzymatically synthesized and conjugated with the synthesized MNP and then radioiodinated with 131I. New Zealand white rabbits were used in SPECT and MRI studies, while tumor modeling studies were performed on 6-7- week-old nude mice utilized with bioluminescence imaging.

Results: Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectra confirmed the expected structures of TQG. The dimensions of nanoparticles were below 10 nm and they had rather polyhedral shapes. Nanoparticles were radioiodinated with 131I with over 95% yield. In imaging studies, in xenograft models, tumor volume was significantly reduced in TQGMNP-treated mice but not in non-treated mice. Among mice treated intravenously with TQGMNP, xenograft tumor models disappeared after 10 and 15 days, respectively.

Conclusion: Our findings suggest that TQGMNP in solid, semi-solid and liquid formulations can be developed using different radiolabeling nuclides for applications in multimodality imaging (SPECT and MRI). By altering the characteristics of radionuclides, TQGMNP may ultimately be used not only for diagnosis but also for the treatment of various cancers as an in vitro diagnostic kit for the diagnosis of beta glucuronidase-rich cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500856PMC
http://dx.doi.org/10.2174/2211556009666200413085800DOI Listing

Publication Analysis

Top Keywords

imaging treatment
8
radioiodinated 131i
8
spect mri
8
imaging
5
thymoquinone glucuronide
4
glucuronide conjugated
4
magnetic
4
conjugated magnetic
4
magnetic nanoparticle
4
nanoparticle bimodal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!