USP7 has been regarded as a potential therapeutic target for cancer. In this study, virtual screening, molecular dynamics (MD) simulation, and biological evaluation have been applied for the discovery of novel USP7 inhibitors targeting the catalytic active site. Among the obtained compounds, compound with a novel scaffold structure exhibited certain USP7 inhibitory activity (Ub-AMC assay IC = 18.40 ± 1.75 μM, Ub-Rho assay IC = 7.75 μM). The binding affinity between USP7 (USP7 catalytic domain) and this hit compound was confirmed with a value of 4.46 ± 0.86 μM. Preliminary in vitro studies disclosed its antiproliferative activity on human prostate cancer cell line LNCaP with an IC value of 15.43 ± 3.49 μM. MD simulation revealed the detailed differences of protein-ligand interactions between USP7 and the ligands, including the reference compound and compound , providing some important information for improving the bioactivity of . This hit compound will serve as a promising starting point for facilitating the further discovery of novel USP7 inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.0c00154 | DOI Listing |
Immunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated which components of the immune microenvironment contribute to ICB failure in glioblastoma to elucidate the underlying causes of immunotherapeutic resistance.
View Article and Find Full Text PDFSci Rep
January 2025
International Joint Research Laboratory for Perception Data Intelligent Processing of Henan, Anyang Normal University, Anyang, 455000, China.
Deconvoluting drug targets is crucial in modern drug development, yet both traditional and artificial intelligence (AI)-driven methods face challenges in terms of completeness, accuracy, and efficiency. Identifying drug targets, especially within complex systems such as the p53 pathway, remains a formidable task. The regulation of this pathway by myriad stress signals and regulatory elements adds layers of complexity to the discovery of effective p53 pathway activators.
View Article and Find Full Text PDFJ Med Virol
January 2025
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Epstein-Barr virus (EBV) is a ubiquitous human ɣ-herpesvirus implicated in various malignancies, including Burkitt's lymphoma and gastric carcinomas. In most EBV-associated cancers, the viral genome is maintained as an extrachromosomal episome by the EBV nuclear antigen-1 (EBNA1). EBNA1 is considered to be a highly stable protein that interacts with the ubiquitin-specific protease 7 (USP7).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:
Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!