The parasitoid wasp parasitizes the aphid , which is obligatorily attended by several species of ants of genus . Subgenus or ants use different defense strategies to protect the aphids that they attend (, shelter building; , aggressive attack). We performed molecular phylogenetic analysis based on partial mitochondrial DNA sequences of and found that the parasitoid wasp consists of two highly differentiated genetic lineages. Although these two lineages distributed sympatrically, one tends to parasitize aphids attended by ants of subgenus , and the other parasitizes aphids attended by ants of subgenus . The two lineages of appear to exhibit different oviposition behaviors adapted to the different aphid-protection strategies of the two ant subgenera.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zs190093DOI Listing

Publication Analysis

Top Keywords

parasitoid wasp
8
aphids attended
8
attended ants
8
ants subgenus
8
cryptic diversity
4
diversity aphid-parasitizing
4
aphid-parasitizing wasp
4
wasp hymenoptera
4
hymenoptera braconidae
4
braconidae discovery
4

Similar Publications

Defensive tactics: lessons from Drosophila.

Biol Open

December 2024

Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA.

Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation.

View Article and Find Full Text PDF

The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.

View Article and Find Full Text PDF

A case of polyploid utility in biocontrol: reproductively-impaired triploid Nasonia vitripennis have high host-killing ability.

Pest Manag Sci

December 2024

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.

Background: Intentionally impairing the fecundity of mass-reared insects has important utility in controlling pest species. Typically, sterilized individuals are competed against wild counterparts, reducing pest population size. A novel consideration is creating biocontrol agents with lower reproductive capacity that are less likely to establish permanently or admix with wild populations, which are both emerging as legal barriers.

View Article and Find Full Text PDF

Experimental horizontal transfer of phage-derived genes to Drosophila confers innate immunity to parasitoids.

Curr Biol

December 2024

Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:

Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins.

View Article and Find Full Text PDF

Intra-individual polymorphisms in the mitochondrial COI gene of tick-killing Ixodiphagus wasps parasitizing Haemaphysalis flava ticks.

Acta Trop

December 2024

Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan. Electronic address:

Ixodid ticks are significant vectors of pathogens affecting both humans and animals. Biological control with natural enemies represents a sustainable tool for managing ticks. However, there is a substantial lack of knowledge about the natural enemies of ticks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!