Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the underlying mechanism of capillary force balance at the contact line. In particular, we offer a novel approach to describe and quantify the capillary force on the liquid in coexistence with its vapor phase, which is crucial in wetting and spreading dynamics. Its relation with the interface tension is elucidated. The proposed model is verified by our molecular dynamics simulations over a wide contact angle range. Differences in capillary forces are observed in evaporating droplets on homogeneous and decorated surfaces. Our findings not only provide a theoretical insight into capillary forces at the contact line, but also validate Young's equation based on a mechanical interpretation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.125502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!