Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Methanol as a chemical feedstock is becoming increasingly important as it is derived from natural gas and is a feasible end-product for captured carbon dioxide. Biological conversion of methanol through natural and synthetic methylotrophs increases the chemical repertoire and is an important direction for one carbon (C1) based chemical economy. Advances in the metabolic engineering and synthetic biology enable development of microbial cell factories for converting methanol into various platform chemicals. In this review, the current status of methanol utilizing microbial factory development is summarized. Also the development of synthetic methylotrophy and methanol-augmented bioproductions is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201900356 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!