A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temporal processing in the striatum: Interplay between midbrain dopamine neurons and striatal cholinergic interneurons. | LitMetric

Temporal processing in the striatum: Interplay between midbrain dopamine neurons and striatal cholinergic interneurons.

Eur J Neurosci

Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France.

Published: April 2021

There has been considerable progress in recent years toward understanding the neuronal mechanisms mediating time perception. Notably, the striatum and its dopamine (DA) input from the ventral midbrain are considered to be central for timing on the scale of hundreds of milliseconds and seconds. The cholinergic interneurons (ChIs) of the striatum provide an extensive local innervation, which closely interacts with striatal DA afferents. Both neuronal systems have been shown to influence synaptic plasticity to shape the transfer of information through the striatum. Given their cooperative role in regulating striatal output pathways, DA and cholinergic inputs may have distinct but complementary roles in timing processes. Electrophysiological recordings from behaving animals have provided evidence that responses of midbrain DA neurons and striatal tonically active neurons (TANs), presumed ChIs, to motivationally relevant events are sensitive to the predicted time of these events; namely, changes in neuronal activity are reduced or absent at times when events are more expected, indicating that temporal aspects of prediction play an important role in the responsiveness of these two neuronal systems. Recently, new findings have further suggested that DA neurons and cholinergic TANs are both involved in the ability to keep track of the elapsed time. These two systems appear to work in parallel in initiating the timing process at the beginning of an interval to be timed. It therefore appears that DA and ChI signaling could participate in striatal processing that is crucial for the control of timing behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.14741DOI Listing

Publication Analysis

Top Keywords

neurons striatal
8
cholinergic interneurons
8
neuronal systems
8
striatal
5
temporal processing
4
striatum
4
processing striatum
4
striatum interplay
4
interplay midbrain
4
midbrain dopamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!