Automatic detection algorithm for establishing standard to identify "surge blood pressure".

Med Biol Eng Comput

Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0948, Japan.

Published: June 2020

Blood pressure (BP) variability is one of the important risk factors of cardiovascular disease (CVD). "Surge BP," which represents short-term BP variability, is defined as pathological exaggerated BP increase capable of triggering cardiovascular events. Surge BP is effectively evaluated by our new BP monitoring device. To the best of our knowledge, we are the first to develop an algorithm for the automatic detection of surge BP from continuous "beat-by-beat" (BbB) BP measurements. It enables clinicians to save significant time identifying surge BP in big data from their patients' continuous BbB BP measurements. A total of 94 subjects (74 males and 20 females) participated in our study to develop the surge BP detection algorithm, resulting in a total of 3272 surges collected from the study subjects. The surge BP detection algorithm is a simple classification model based on supervised learning which formulates shape of surge BP as detection rules. Surge BP identified with our algorithm was evaluated against surge BP manually labeled by experts with 5-fold cross validation. The recall and precision of the algorithm were 0.90 and 0.64, respectively. Processing time on each subject was 11.0 ± 4.7 s. Our algorithm is adequate for use in clinical practice and will be helpful in efforts to better understand this unique aspect of the onset of CVD. Graphical abstract Surge blood pressure (surge BP) which is defined as pathological short-term (several tens of seconds) exaggerated BP increase capable of triggering cardiovascular events. We have already developed a wearable continuous beat-by-beat (bBb) BP monitoring device and observed surge BPs successfully in obstructive sleep apnea patients. In this, we developed an algorithm for the automatic detection of surge BP from continuous BbB BP measurements to save significant time identifying surge BP among > 30,000 BbB BP measurements. Our result shows this algorithm can correctly detect surge BPs with a recall of over 0.9.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211788PMC
http://dx.doi.org/10.1007/s11517-020-02162-4DOI Listing

Publication Analysis

Top Keywords

bbb measurements
16
surge
14
automatic detection
12
detection algorithm
12
surge detection
12
algorithm
9
blood pressure
8
defined pathological
8
exaggerated increase
8
increase capable
8

Similar Publications

In vivo three-photon fluorescence imaging of mouse brain vasculature labeled by Evans blue excited at the NIR-III window.

Biomed Opt Express

January 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.

Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) dysfunction is suggested to be a potential mediator between vascular risk factors and cognitive impairment, leading to vascular cognitive impairment. To investigate the relationships between age, sex, and vascular risk factors and BBB water permeability as well as their relationship with cognition. To measure BBB permeability, a novel arterial spin labelling MRI technique (ME-ASL) was applied to derive the time of exchange (Tex), arterial time transit (ATT), and cerebral blood flow (CBF).

View Article and Find Full Text PDF

Foreign Contaminants Target Brain Health.

CNS Neurol Disord Drug Targets

January 2025

Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi, India-110017.

Neurodisease, caused by undesired substances, can lead to mental health conditions like depression, anxiety and neurocognitive problems like dementia. These substances can be referred to as contaminants that can cause damage, corruption, and infection or reduce brain functionality. Contaminants, whether conceptual or physical, have the ability to disrupt many processes.

View Article and Find Full Text PDF

Long-Term Exposure to Tire-Derived 6-PPD Quinone Causes Neurotoxicity and Neuroinflammation via Inhibition of HTR2A in C57BL/6 Mice.

Environ Sci Technol

January 2025

School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China.

-(1,3-dimethylbutyl)-'-phenyl--phenylenediamine quinone (6-PPDQ), a novel contaminant derived from tire wear, has raised concerns due to its potential neurotoxicity, yet its long-term effects on mammalian neurological health remain poorly understood. This study investigates the neurotoxic and neuroinflammatory impacts of prolonged 6-PPDQ exposure using male C57BL/6 mice. Behavioral assessments revealed significant cognitive deficits, while biochemical analyses demonstrated increased levels of reactive oxygen species, apoptosis, and blood-brain barrier (BBB) disruption.

View Article and Find Full Text PDF

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!