Purpose: To develop an automated model for staging knee osteoarthritis severity from radiographs and to compare its performance to that of musculoskeletal radiologists.
Materials And Methods: Radiographs from the Osteoarthritis Initiative staged by a radiologist committee using the Kellgren-Lawrence (KL) system were used. Before using the images as input to a convolutional neural network model, they were standardized and augmented automatically. The model was trained with 32 116 images, tuned with 4074 images, evaluated with a 4090-image test set, and compared to two individual radiologists using a 50-image test subset. Saliency maps were generated to reveal features used by the model to determine KL grades.
Results: With committee scores used as ground truth, the model had an average F1 score of 0.70 and an accuracy of 0.71 for the full test set. For the 50-image subset, the best individual radiologist had an average F1 score of 0.60 and an accuracy of 0.60; the model had an average F1 score of 0.64 and an accuracy of 0.66. Cohen weighted κ between the committee and model was 0.86, comparable to intraexpert repeatability. Saliency maps identified sites of osteophyte formation as influential to predictions.
Conclusion: An end-to-end interpretable model that takes full radiographs as input and predicts KL scores with state-of-the-art accuracy, performs as well as musculoskeletal radiologists, and does not require manual image preprocessing was developed. Saliency maps suggest the model's predictions were based on clinically relevant information. © RSNA, 2020.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104788 | PMC |
http://dx.doi.org/10.1148/ryai.2020190065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!