Density Functional Study of Cubic, Tetragonal, and Orthorhombic CsPbBr Perovskite.

ACS Omega

Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

Published: April 2020

Cesium lead bromide (CsPbBr) perovskite has recently gained significance owing to its rapidly increasing performance when used for light-emitting devices. In this study, we used density functional theory to determine the structural, electronic, and optical properties of the cubic, tetragonal, and orthorhombic temperature-dependent phases of CsPbBr perovskite using the full-potential linear augmented plane wave method. The electronic properties of CsPbBr perovskite have been investigated by evaluating their changes upon exerting spin-orbit coupling (SOC). The following exchange potentials were used: the local density approximation (LDA), Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), Engel-Vosko GGA (EV-GGA), Perdew-Burke-Ernzerhof GGA revised for solids (PBEsol-GGA), modified Becke-Johnson GGA (mBJ-GGA), new modified Becke-Johnson GGA (nmBJ-GGA), and unmodified Becke-Johnson GGA (umBJ-GGA). Our band structure results indicated that the cubic, tetragonal, and orthorhombic phases have direct energy bandgaps. By including the SOC effect in the calculations, the bandgaps computed with mBJ-GGA and nmBJ-GGA were found to be in good agreement with the experimental results. Additionally, despite the large variations in their lattice constants, the three CsPbBr phases possessed similar optical properties. These results demonstrate a wide temperature range of operation for CsPbBr.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144159PMC
http://dx.doi.org/10.1021/acsomega.0c00197DOI Listing

Publication Analysis

Top Keywords

cspbbr perovskite
16
cubic tetragonal
12
tetragonal orthorhombic
12
becke-johnson gga
12
density functional
8
optical properties
8
modified becke-johnson
8
cspbbr
6
gga
5
functional study
4

Similar Publications

Addressing the challenges of the efficiency and stability of red perovskite nanocrystals is imperative for the successful deployment of these materials in displays and lighting applications. the structural dynamic changes of red perovskite quantum dots (PQDs) are explored using a flow chemistry system to solve the above hurdles. First, the ultrabright red-emitting PQDs of CsPb(Br,I) are achieved by adjusting ligand distribution (oleic acid and oleyamine) in combination with different flow rates and equivalence ratios.

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

So far, the striking sign reversal in the near-ambient slope of the gap temperature dependence of colloidal CsPbCl perovskite nanocrystals (NCs) compared to its Br counterpart remains unresolved. Pure bromide NCs exhibit a linear gap increase with increasing temperature, to which thermal expansion and electron-phonon interaction equally contribute. In contrast, the temperature slope for the chlorine compound gap is clearly negative.

View Article and Find Full Text PDF

Anti-Scattering Perovskite Scintillator Arrays for High-Resolution Computed Tomography Imaging.

Adv Mater

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Computed tomography (CT) imaging has emerge as an effective medical diagnostic technique due to its rapid and 3D imaging capabilities, often employing indirect imaging methods through scintillator materials. Arraying scintillators that can confine light scattering to enable high-resolution CT imaging remains an area of ongoing exploration for emerging perovskite scintillators. Here an anti-scattering cesium lead bromide (CsPbBr) scintillator array embedded within a polyurethane acrylate matrix for CT imaging using a cost-effective solution-processed method is reported.

View Article and Find Full Text PDF

Centimeter-Sized CsPbBr Single-Crystal Films for Energy-Resolved Radiation Detection.

ACS Appl Mater Interfaces

January 2025

Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

Metal halide perovskites (MHPs) are promising materials for radiation detection. Compared with polycrystalline films, single crystals (SCs) have lower defect density, higher carrier mobility, and lifetime. However, the direct synthesis of MHP SCs for large-area flat panel imaging detectors remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!