Pigmented rice is enriched with antioxidants, macro- and micronutrients. A comprehensive investigation of the gene expression patterns among the pigmented rice varieties would help to understand the cellular mechanism and biological processes of rice grain pigmentation. Hence, we performed RNA sequencing and analysis on the whole grain of dehusked mature seeds of selected six Malaysian rice varieties with varying grain pigmentations. These varieties were black rice (BALI and Pulut Hitam 9), red rice (MRM16 and MRQ100) and white rice (MR297 and MRQ76). Illumina HiSeq™ 4000 sequencer was used to generate total raw nucleotides of approximately 53 Gb in size. From 353,937,212 total paired-end raw reads, 340,131,496 total clean reads were obtained. The raw reads were deposited into European Nucleotide Archive (ENA) database and can be accessed via accession number PRJEB34340. This dataset allows us to identify and profile all expressed genes with functions related to nutritional traits (i.e. antioxidants, folate and amylose content) and quality trait (i.e. aroma) across both pigmented and non-pigmented rice varieties. In addition, the transcriptome data obtained will be valuable for discovery of potential gene markers and functional SNPs related to functional traits to assist in rice breeding programme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138961PMC
http://dx.doi.org/10.1016/j.dib.2020.105432DOI Listing

Publication Analysis

Top Keywords

rice varieties
16
rice
11
pigmented non-pigmented
8
malaysian rice
8
pigmented rice
8
raw reads
8
varieties
5
rna-seq data
4
data rice
4
rice grains
4

Similar Publications

Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!