Osteoporosis is a major public health problem that is associated with high morbidity and mortality, and its prevalence is increasing as the world's population ages. Therefore, understanding the molecular basis of the disease is becoming a high priority. In this regard, studies have shown that an imbalance in adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) is associated with osteoporosis. In this study, we conducted a Weighted Gene Co-Expression Network Analysis to identify gene modules associated with the differentiation of bone marrow MSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis showed that the most significant module, the brown module, was enriched with genes involved in cell cycle regulation, which is in line with the initial results published using these data. In addition, the Cytoscape platform was used to identify important hub genes and lncRNAs correlated with the gene modules. Furthermore, differential gene expression analysis identified 157 and 40 genes that were upregulated and downregulated, respectively, after 3 h of MSCs differentiation. Interestingly, regulatory network analysis, and comparison of the differentially expressed genes with those in the brown module identified potential novel biomarker genes, including two transcription factors (ZNF740, FOS) and two hub genes (FOXQ1, SGK1), which were further validated for differential expression in another data set of differentiation of MSCs. Finally, Gene Set Enrichment Analysis suggested that the two most important candidate hub genes are involved in regulatory pathways, such as the JAK-STAT and RAS signaling pathways. In summary, we have revealed new molecular mechanisms of MSCs differentiation and identified novel genes that could be used as potential therapeutic targets for the treatment of osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134052PMC
http://dx.doi.org/10.7717/peerj.8907DOI Listing

Publication Analysis

Top Keywords

network analysis
12
hub genes
12
genes
9
weighted gene
8
differentiation bone
8
bone marrow
8
gene modules
8
enrichment analysis
8
brown module
8
genes involved
8

Similar Publications

Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathogenesis is not fully understood to date. One of the suggested mechanisms for its development is NETosis, which involves the release of a specific network consisting of chromatin, proteins, and enzymes from neutrophils, stimulating the immune system. One of its markers is citrullinated histone H3 (H3Cit).

View Article and Find Full Text PDF

Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.

Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.

View Article and Find Full Text PDF

Background: Virtual follow-up (VFU) has the potential to enhance cancer survivorship care. However, a greater understanding is needed of how VFU can be optimized.

Objective: This study aims to examine how, for whom, and in what contexts VFU works for cancer survivorship care.

View Article and Find Full Text PDF

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!