Regioselectively α- and β-alkynylated BODIPY dyes via gold(I)-catalyzed direct C-H functionalization and their photophysical properties.

Beilstein J Org Chem

Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan.

Published: April 2020

AI Article Synopsis

  • A series of BODIPY derivatives with α- and β-ethynyl substituents were created using a gold(I)-catalyzed reaction that selectively adds ethynyl groups to dipyrromethane.
  • The positioning of the ethynyl substituents affects the photophysical characteristics of these compounds, with an increase in substituents leading to longer-wavelength absorbance and fluorescence.
  • This synthesis approach allows researchers to fine-tune the light-absorbing properties of BODIPY dyes, making it useful for developing advanced materials in photonics and electronic applications.

Article Abstract

A series of α- and β-ethynyl-substituted BODIPY derivatives (, , , ) were synthesized by gold(I)-catalyzed direct C-H alkynylation reactions of dipyrromethane and BODIPY, respectively, with ethynylbenziodoxolone (EBX) in a regioselective manner. Depending on the position of the ethynyl substituent in the BODIPY skeleton, the photophysical properties of the resulting α- and β-substituted BODIPYs are notably altered. The lowest S-S transition absorbance and fluorescence bands are both bathochromically shifted as the number of substituents increases, while the emission quantum yields of the β-ethynylated derivatives are significantly lower than those of α-ethynylated ones. The current method should be useful for fine-tuning of the photophysical properties of BODIPY dyes as well as for constructing BODIPY-based building cores for functional π-materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136566PMC
http://dx.doi.org/10.3762/bjoc.16.53DOI Listing

Publication Analysis

Top Keywords

photophysical properties
12
bodipy dyes
8
goldi-catalyzed direct
8
direct c-h
8
bodipy
5
regioselectively α-
4
α- β-alkynylated
4
β-alkynylated bodipy
4
dyes goldi-catalyzed
4
c-h functionalization
4

Similar Publications

A series of 2,6-di(pyrazine-2-yl)pyridine (dppy) ligands - of varying substituents of different electronic nature (-NMe, -OMe,-Me, and -Cl) in the 4-position of the pyridine moiety has been designed and synthesized to study the binding behavior of the dppy ligands towards Bovine Serum Albumin (BSA), a low-cost serum albumin protein. The interaction between ligands and BSA has been studied using UV-Visible and fluorescence spectroscopy and molecular docking studies. The fluorescence of BSA was found to be quenched in the presence of all the ligands , in which ligand , having the most electron donating group NMe exhibits the maximum binding affinity towards BSA.

View Article and Find Full Text PDF

Development of Triphenylamine Derived Photosensitizers for Efficient Hydrogen Evolution from Water.

Chemistry

January 2025

The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong (P.R. China), 000000, Hong Kong, HONG KONG.

A series of new (donor)₂-donor-π-acceptor (D2-D-π-A) and (acceptor)₂-donor-π-acceptor (A2-D-π-A) organic photosensitizers based on the framework of (Z)-2-cyano-3-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)acrylic acid have been synthesized and characterized. By incorporating groups with different electron-donating or withdrawing abilities, such as dibenzothiophene (DBT), dibenzofuran (DBF), and triazine (TA), into the triphenylamine segment, their photophysical properties have been regulated.  Theoretical calculations were used to explore how various donor-acceptor combinations influence their hydrogen production performance.

View Article and Find Full Text PDF

Rational design of AIEgens through π-bridge engineering for dual-modal photodynamic and photothermal therapy.

Bioorg Med Chem

January 2025

School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research, Zunyi Medical University, Zunyi, Guizhou 563003, PR China. Electronic address:

A series of aggregation-induced emission luminogens (AIEgens) with donor-π-acceptor (D-π-A) architecture were rationally designed and synthesized through π-bridge engineering for dual-modal photodynamic and photothermal therapy. The AIEgens (TPT, TFT, and TTT) were constructed using methoxy-substituted tetraphenylene as the electron donor and tricyanofuran as the electron acceptor, connected via different π-bridges (phenyl, furan, or thiophene). These compounds exhibited red-shifted absorption (460-545 nm) and emission (712-720 nm) with remarkable aggregation-induced emission characteristics.

View Article and Find Full Text PDF

With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers.

View Article and Find Full Text PDF

Mechanochromic materials, known for their ability to change color in response to mechanical stimuli such as pressure, stretching, grinding, or rubbing, hold significant importance due to their diverse applications. In this study, we synthesized and characterized two novel pyridine-tethered imidazo[1,2-a]pyridine mechanoresponsive luminogens with appended tetraphenylethene, named GBY-10 and GBY-11. GBY-10 exhibited reversible mechanofluorochromism, while GBY-11 did not revert to its original color after solvent fuming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!