The regioselective C-H arylation of substituted polycyclic aromatic hydrocarbons (PAHs) is a desired but challenging task. A copper-catalyzed C7-H arylation of 1-naphthamides has been developed by using aryliodonium salts as arylating reagents. This protocol does not need to use precious metal catalysts and tolerates wide variety of functional groups. Under standard conditions, the remote C-H arylation of other PAHs including phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide has also accomplished, which provides an opportunity for the development of diverse organic optoelectronic materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136547 | PMC |
http://dx.doi.org/10.3762/bjoc.16.49 | DOI Listing |
Catal Sci Technol
December 2024
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
Even though α-arylation of ketones is attractive for direct C-H functionalization of organic substrates, the method largely relies on phosphine-ligated palladium complexes. Only recently, efforts have focused on developing nitrogen-based ligands as a more sustainable alternative to phosphines, with pyridine-functionalized pyridinium amidate (pyr-PYA) ,'-bidentate ligands displaying good selectivity and activity. Here, we report on a second generation set of catalyst precursors that feature a 5-membered N-heterocycle instead of a pyridine as chelating unit of the PYA ligand to provide less steric congestion for the rate-limiting transmetalation of the enolate.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Herein, we present a Pd(OAc)/Dppp-catalyzed synthesis of 4-arylphenanthridinones from 2-bromobenzamides and iodobenzene, which undergoes successive Ullman cross-coupling, C-H activation, and oxidative coupling dehydrogenation process. The presented methods offer an adaptable and modular synthesis route for efficiently producing a wide array of valuable phenanthridiones, demonstrating exceptional compatibility with functional groups. Alternatively, a 1:1 cross-coupling reaction utilizing an intramolecular norbornene moiety as the ligand resulted in phenanthridinones through -arylation and C-H activation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Melbourne, School of Chemistry, 30 Flemington Rd., VIC 3095, Parkville, AUSTRALIA.
Palladium(II)-catalyzed C-H functionalization has attracted considerable attention as a pathway to late-stage modification of peptides. Herein, we report the Pd-catalyzed C(sp3)-H arylation of peptides directed by an amidoxime ether, which can be easily incorporated into peptides at any amide bond. Site- and stereoselective arylation of peptides has been achieved, including an unprecedented example of C-H arylation of an internal residue.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!