Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent. Warmer temperatures may result in higher ecosystem carbon loss through respiration and higher potential evapotranspiration through increased atmospheric demand for water. Thus, the net effects of a warming planet are uncertain and highly dependent on local climate and vegetation. We analyzed five years of data from the Coweeta eddy covariance tower in the southern Appalachian Mountains of western North Carolina, USA, a highly productive region that has historically been underrepresented in flux observation networks. We examined how leaf phenology and climate affect water and carbon cycling in a mature forest in one of the wettest biomes in North America. Warm temperatures in early 2012 caused leaf-out to occur two weeks earlier than in cooler years and led to higher seasonal carbon uptake. However, these warmer temperatures also drove higher winter ecosystem respiration, offsetting much of the springtime carbon gain. Interannual variability in net carbon uptake was high (147 to 364 g C m y), but unrelated to growing season length. Instead, years with warmer growing seasons had 10% higher respiration and sequestered ~40% less carbon than cooler years. In contrast, annual evapotranspiration was relatively consistent among years (coefficient of variation = 4%) despite large differences in precipitation (17%, range = 800 mm). Transpiration by the evergreen understory likely helped to compensate for phenologically-driven differences in canopy transpiration. The increasing frequency of high summer temperatures is expected to have a greater effect on respiration than growing season length, reducing forest carbon storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147817 | PMC |
http://dx.doi.org/10.1016/j.agrformet.2018.01.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!