Brain aging is accompanied by an accumulation of damaged proteins, which results from deterioration of cellular quality control mechanisms and decreased protein degradation. The ubiquitin-proteasome system (UPS) is the primary proteolytic mechanism responsible for targeted degradation. Recent work has established a critical role of the UPS in memory and synaptic plasticity, but the role of the UPS in age-related cognitive decline remains poorly understood. Here, we measured markers of UPS function and related them to fear memory in rats. Our results show that age-related memory deficits are associated with reductions in phosphorylation of the Rpt6 proteasome regulatory subunit and corresponding increases in lysine-48 (K48)-linked ubiquitin tagging within the basolateral amygdala. Increases in K48 polyubiquitination were also observed in the medial prefrontal cortex and dorsal hippocampus. These data suggest that protein degradation is a critical component of age-related memory deficits. This extends our understanding of the relationship between the UPS, aging, and memory, which is an important step toward the prevention and treatment of deficits associated with normal cognitive aging and memory-related neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232789 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2020.03.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!