A multi-throughput mechanical loading system for mouse intervertebral disc.

J Mech Behav Biomed Mater

Department of Surgery, University of Virginia, 345 Crispell Drive, Charlottesville, VA, 22908, United States. Electronic address:

Published: May 2020

Mechanical loading plays an important role in maintaining disc health and function, and in particular, excessive mechanical loading has been identified as one of major reasons of disc degeneration. Intervertebral disc organ culture serves as a valuable tool to study disc biology/pathology. In this study, we report the development and validation of a new mouse disc organ culture system by dynamically applying compression loading in a customized micro-culture device tailored for mouse lumbar discs. Precise axial compression force was delivered by a computer-controlled system consisting of a robust micromechanical linear actuator, a force sensitive resistor, and a precision micro-stepping machinery. Customized PDMS-based loading chambers allowed simultaneous loading of six discs per regimen, which streamlined the workflow to reach sufficient statistic power. The detrimental loading regimen of mouse lumbar discs (0.5 MPa of axial compression at 1Hz for 7 days) was demonstrated through live-dead assay, histology, and fluorescence probe based collagen staining. In addition, various mechanical compression profiles were simulated using different materials and geometry designs, potentiating for more sophisticated loading protocols. In summary, we developed a new mechanical loading system for dynamic axial compression of mouse discs, which created a unique avenue to study disc pathogenesis with enriched mouse species-related resources, and complemented the existing spectrum of bioreactor systems predominately for discs of human and large animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.103636DOI Listing

Publication Analysis

Top Keywords

mechanical loading
16
axial compression
12
loading
9
loading system
8
intervertebral disc
8
disc organ
8
organ culture
8
study disc
8
mouse lumbar
8
lumbar discs
8

Similar Publications

Objectives: This study evaluated different designs of the conical implant-abutment connection (IAC) and their resistance to microgap formation under oblique loads as specified by the ISO standard for testing dental implants. Also evaluated was the effect of deviations from the ISO specifications on the outcomes.

Methods: Finite element analysis was conducted to compare the microgap formation and stress distribution among three conical IAC designs (A, B, and C) in two loading configurations: one compliant with ISO 14801 and one with a modified load adaptor (non-ISO).

View Article and Find Full Text PDF

Flow environment affects nutrient transport in soft plant roots.

Soft Matter

January 2025

Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.

View Article and Find Full Text PDF

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Objectives: The incidence rate of intervertebral disc degeneration (IVDD) is increasing year by year, which brings great harm to our health. The change of biomechanical factors is an important reason for IVDD. Therefore, more and more studies use finite element (FE) models to analyze the biomechanics of spine.

View Article and Find Full Text PDF

This research focuses on developing and characterizing islatravir-loaded dissolving microarray patches (MAPs) to provide an effective, minimally invasive treatment option for human immunodeficiency virus (HIV-1) prevention and treatment. The research involves manufacturing these MAPs using a double-casting approach, and conducting in vitro and in vivo evaluations. Results show that the MAPs have excellent needle fidelity, structural integrity, and mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!