Tremendous demands for simultaneous imaging of biological entities, along with the drawback of photobleaching in fluorescent dyes, have encouraged scientists to apply novel and non-toxic colloidal quantum dots (QDs) in biomedical researches. Herein, a novel aqueous-phase approach for the preparation of multicomponent In-based QDs is reported. Absorption and photoluminescence emission spectra of the as-prepared QDs were tuned by alteration of QDs' composition as Zn-Ag-In-S/ZnS, Ag-In-S/ZnS and Cu-Ag-In-S/ZnS core/shell QDs. In order to reach reproducibly intense and tunable light-emissive colloidal QDs with green, amber, and red color, various optimization steps were carefully performed. The structural characterizations such as EDX, ICP-AES, XRD, TEM and FT-IR measurements were also carried out to demonstrate the success of the present method to prepare extremely quantum-confined QDs capped with functional groups. Then, to ensure their promising biomedical applications, the generated intracellular reactive oxygen species (ROS) by QDs were quantitatively and qualitatively measured in dark conditions and under 405 nm laser irradiation. Our results verified an enhancement in the generation of reactive oxygen species (ROS) and cytotoxic effects in the presence of laser irradiation while their muted toxic effects in dark conditions confirmed biocompatible properties of un-excited In-based QDs. Moreover, bioimaging analysis revealed strong merits of the suggested synthetic route to achieve ideal fluorescent QDs as bright/multi-color optical nano-probes in imaging and transporting pumps in the cell membrane. This further emphasized the potential ability of the present AgInS-based/ZnS QDs in obtaining required results as theranostic agents for simultaneous treatment and imaging of cancer. The harmonized advantages in simplicity and effectiveness of synthesis procedure, excellent structural/optical properties enriched with confirmed biomedical merits in high contrast imaging and potential treatment highlight the present work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2020.110807 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.
Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFSilicon nitride (SiN) integrated photonics is a highly promising platform for photonic quantum information processing. However, the efficient generation of single photons remains a significant challenge. Epitaxial InAs/GaAs quantum dots (QDs) embedded in wavelength-scale nanocavities offer a promising solution as single-photon sources (SPSs), but their integration with SiN has not yet been demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!