Ifosfamide (IFA) is an effective antineoplastic for solid tumours in children, although it is associated with high levels of systemic toxicity and causes death in some cases. The aim of this study was to determine whether the presence of certain allelic variants of genes , , and increases the risk of toxicity in children with solid tumours treated with ifosfamide. A total of 131 DNA samples were genotyped by real-time polymerase chain reaction (RT-PCR) using TaqMan probes. Toxicity was assessed using WHO criteria, and survival analysis was performed using Kaplan-Meier curves. The rs3745274 allelic variant in was associated with haematological toxicity, affecting neutrophils; variant rs2740574 was also associated with toxicity, affecting both leukocytes and neutrophils. Additionally, the gene variant rs776746 was found to affect haemoglobin. Our results show that allelic variants rs3745274 (, rs2740574 ( and rs776746 ( increase the risk for high haematological toxicity. 068/2013.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1354750X.2020.1754913DOI Listing

Publication Analysis

Top Keywords

allelic variants
12
solid tumours
8
haematological toxicity
8
toxicity
7
analysis gene
4
allelic
4
gene allelic
4
variants predict
4
predict ifosfamide
4
ifosfamide toxicity
4

Similar Publications

Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations.

Genet Med

December 2024

Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Objectives: Biallelic HPDL variants have been identified as the cause of a progressive childhood-onset movement disorder, with a broad clinical spectrum from severe neurodevelopmental disorder to juvenile-onset pure hereditary spastic paraplegia type 83. This study aims at delineating the geno- and phenotypic spectra of patients with HPDL-related disease, quantitatively modelling the natural history, and uncovering genotype-phenotype associations.

Methods: A cross-sectional analysis of 90 published and one novel case was performed, employing a Human Phenotype Ontology-based approach.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Chlamydiosis is a common infectious disease impacting koalas and is a major cause of population decline due to resulting mortality and infertility. Polymorphisms of major histocompatibility complex (MHC) genes influence chlamydial disease outcomes in several species but koala studies have produced variable results. We aimed to identify the MHC II DAB and DBB repertoire of koalas from Liverpool Plains, NSW, a population heavily impacted by chlamydiosis.

View Article and Find Full Text PDF

Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.

View Article and Find Full Text PDF

Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and G12/G13 Detection in Cell-Free DNA.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!