Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterologous Siderophore Production.

iScience

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. Electronic address:

Published: April 2020

Siderophores are small molecule metal chelators secreted in sparse quantities by their native microbial hosts but can be engineered for enhanced production from heterologous hosts like Escherichia coli. These molecules have been proved to be capable of binding heavy metals of commercial and/or environmental interest. In this work, we incorporated, as needed, the appropriate pathways required to produce several siderophores (anguibactin, vibriobactin, bacillibactin, pyoverdine, and enterobactin) into the base E. coli K-12 MG1655 metabolic network model to computationally predict, via flux balance analysis methodologies, gene knockout targets, gene over-expression targets, and media modifications capable of improving siderophore reaction flux. E. coli metabolism proved supportive for the underlying production mechanisms of various siderophores. Within such a framework, the gene deletion and over-expression targets identified, coupled with complementary insights from medium optimization predictions, portend experimental implementation to both enable and improve heterologous siderophore production. Successful production of siderophores would then spur novel metal-binding applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152677PMC
http://dx.doi.org/10.1016/j.isci.2020.101016DOI Listing

Publication Analysis

Top Keywords

flux balance
8
balance analysis
8
improve heterologous
8
heterologous siderophore
8
siderophore production
8
production siderophores
8
over-expression targets
8
production
5
analysis media
4
media optimization
4

Similar Publications

The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.

View Article and Find Full Text PDF

Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast.

Synth Syst Biotechnol

December 2024

Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

, a widely utilized model organism, has seen continuous updates to its genome-scale metabolic model (GEM) to enhance the prediction performance for metabolic engineering and systems biology. This study presents an auxotrophy-based curation of the yeast GEM, enabling facile upgrades to yeast GEMs in future endeavors. We illustrated that the curation bolstered the predictive capability of the yeast GEM particularly in predicting auxotrophs without compromising accuracy in other simulations, and thus could be an effective manner for GEM refinement.

View Article and Find Full Text PDF

This work presents the synthesis, purification, and characterization of a molten salt fuel for the irradiation experiment SALIENT-03 (SALt Irradiation ExperimeNT), a collaborative effort between the Nuclear Research and Consultancy Group and the Joint Research Centre, European Commission. The primary objective of the project is to investigate the corrosion behavior of selected Ni-alloy based structural materials which are being considered for the construction of fluoride molten salt reactors. During the test, these materials will be exposed to selected liquid molten fuel salts under irradiation in the High Flux Reactor in Petten, the Netherlands.

View Article and Find Full Text PDF

Lacustrine groundwater discharge as an important hidden source of nutrients to a large eutrophic lake: Implications for eutrophication management.

Sci Total Environ

January 2025

Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.

Lake eutrophication driven by excessive nutrient inputs has become a global issue, but the potential impact of lacustrine groundwater discharge (LGD) as a nutrient source on lake eutrophication remains largely unknown. This study assessed the contribution of LGD-derived nutrient loads and revealed their potential impact on lake eutrophication in Taihu Lake, a typical large shallow and eutrophic lake in China, based on the segmented radon mass balance model and nutrient data. The total LGD flux was estimated to be 6.

View Article and Find Full Text PDF

Motivation: Mitochondria are essential for cellular metabolism and are inherently flexible to allow correct function in a wide range of tissues. Consequently, dysregulated mitochondrial metabolism affects different tissues in different ways leading to challenges in understanding the pathology of mitochondrial diseases. System-level metabolic modelling is useful in studying tissue-specific mitochondrial metabolism, yet despite the mouse being a common model organism in research, no mouse specific mitochondrial metabolic model is currently available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!