Declining auditory spatial processing is hypothesized to contribute to the difficulty older adults have detecting, locating, and selecting a talker from among others in noisy listening environments. Though auditory spatial processing has been associated with several cortical structures, little is known regarding the underlying white matter architecture or how age-related changes in white matter microstructure may affect it. The arcuate fasciculus is a target for understanding age-related differences in auditory spatial attention based on normative spatial attention findings in humans. Similarly, animal and human clinical studies suggest that the corpus callosum plays a role in the cross-hemispheric integration of auditory spatial information important for spatial localization and attention. The current investigation used diffusion imaging to examine the extent to which age-group differences in the identification of spatially cued speech were accounted for by individual differences in the white matter microstructure of the right arcuate fasciculus and the corpus callosum. Higher right arcuate and callosal fractional anisotropy (FA) predicted better segregation and identification of spatially cued speech across younger and older listeners. Further, individual differences in callosal microstructure mediated age-group differences in auditory spatial processing. Follow-up analyses suggested that callosal tracts connecting left and right pre-frontal and posterior parietal cortex are particularly important for auditory spatial processing. The results are consistent with previous work in animals and clinical human samples and provide a cortical mechanism to account for age-related deficits in auditory spatial processing. Further, the results suggest that both intrahemispheric and interhemispheric mechanisms are involved in auditory spatial processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292771 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2020.116792 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!