A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning. | LitMetric

Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning.

Acad Radiol

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd road, Guangzhou 510080 Guangdong, PR China. Electronic address:

Published: February 2021

Rationale And Objectives: Ki-67 is one of the most important biomarkers of breast cancer traditionally measured invasively via immunohistochemistry. In this study, deep learning based radiomics models were established for preoperative prediction of Ki-67 status using multiparametric magnetic resonance imaging (mp-MRI).

Materials And Methods: Total of 328 eligible patients were retrospectively reviewed [training dataset (n = 230) and a temporal validation dataset (n = 98)]. Deep learning imaging features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (T1+C). Transfer learning techniques constructed four feature sets based on the individual three MR sequences and their combination (i.e., mp-MRI). Multilayer perceptron classifiers were trained for final prediction of Ki-67 status. Mann-Whitney U test compared the predictive performance of individual models.

Results: The area under curve (AUC) of models based on T2WI,T1+C,DWI and mp-MRI were 0.727, 0.873, 0.674, and 0.888 in the training dataset, respectively, and 0.706, 0.829, 0.643, and 0.875 in the validation dataset, respectively. The predictive performance of mp-MRI classification model in the AUC value was significantly better than that of the individual sequence model (all p< 0.01).

Conclusion: In clinical practice, a noninvasive approach to improve the performance of radiomics in preoperative prediction of Ki-67 status can be provided by extracting breast cancer specific structural and functional features from mp-MRI images obtained from conventional scanning sequences using the advanced deep learning methods. This could further personalize medicine and computer aided diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2020.02.006DOI Listing

Publication Analysis

Top Keywords

prediction ki-67
16
ki-67 status
16
preoperative prediction
12
breast cancer
12
deep learning
12
transfer learning
8
validation dataset
8
predictive performance
8
ki-67
5
learning
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!