Among the available imaging techniques, functional imaging provided by nuclear medicine departments represents a tool of choice for the oncoradiotherapist for targeting tumour activity, with positron emission tomography as the main modality. Before, during or after radiotherapy, functional imaging helps guide the oncoradiotherapist in making decisions and in the strategic choice of pathology management. Setting up a working group to ensure perfect coordination at all levels is the first step. Key points for a common and coordinated management between the two departments are the definition of an organizational logistic, training of personnel at every levels, standardization of nomenclatures, the choice of adapted and common equipment, implementation of regulatory controls, and research/clinical routine continuum. The availability of functional examinations dedicated to radiotherapy in clinical routine is possible and requires a convergence of teams and a pooling of tools and techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canrad.2020.02.011 | DOI Listing |
Fluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Radiology, Shenzhen Children's Hospital, Shantou University Medical College, 7019 Yitian Road, Futian District, Shenzhen, 518038, China.
Background: Beta thalassemia major (β-TM) is a severe genetic anemia with considerable phenotypic heterogeneity. This study investigated whether genotype correlates with distinct myocardial iron overload patterns, assessed by cardiovascular magnetic resonance (CMR) T2* values.
Methods: CMR data for cardiac iron deposition evaluation, which recruited pediatric participants between January 2021 and December 2024, were analyzed with CVI42.
BMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
Nat Cancer
January 2025
Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), Essen, Germany.
Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles.
View Article and Find Full Text PDFNat Commun
January 2025
Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany.
Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!