Most of the studies employing neuroimaging have focused on cortical and subcortical signals individually to obtain neurophysiological signatures of cognitive functions. However, understanding the dynamic communication between the cortex and subcortical structures is essential for unraveling the neural correlates of cognition. In this quest, magnetoencephalography (MEG) and electroencephalography (EEG) are the methods of choice because they are noninvasive electrophysiological recording techniques with high temporal resolution. Sophisticated MEG/EEG source estimation techniques and network analysis methods, developed recently, can provide a more comprehensive understanding of the neurophysiological mechanisms of fundamental cognitive processes. Used together with noninvasive modulation of cortical-subcortical communication, these approaches may open up new possibilities for expanding the repertoire of noninvasive cognitive neurotechnology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442676 | PMC |
http://dx.doi.org/10.1016/j.tibtech.2020.03.003 | DOI Listing |
Sensors (Basel)
December 2024
Mines Saint-Etienne, Centre CMP, Département BEL, F-13541 Gardanne, France.
The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.
View Article and Find Full Text PDFNeuroethics
July 2024
Department of Philosophy, Savery Hall, University of Washington, Seattle, WA, 98195, USA.
Neurotechnological cognitive enhancement has become an area of intense scientific, policy, and ethical interest. However, while work has increasingly focused on ethical views of the general public, less studied are those with personal connections to cognitive impairment. Using a mixed-methods design, we surveyed attitudes regarding implantable neurotechnological cognitive enhancement in individuals who self-identified as having increased likelihood of developing dementia (n=25; 'Our Study'), compared to a nationally representative sample of Americans (n=4726; 'Pew Study').
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body environment, raising reliability concerns, particularly for chronic use. Here, we evaluate the inherent hermeticity of bare die ICs, and examine the potential of polydimethylsiloxane (PDMS), a moisture-permeable elastomer, as a standalone encapsulation material.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Federal Center of Brain Research and Neurotechnologies, Moscow, Russia.
Objective: Study of neuroimaging changes according to MRI morphometry and their comparison with the structure and severity of cognitive impairment (CI) in patients with Alzheimer's disease (AD) and primary open-angle glaucoma (POAG).
Material And Methods: The study involved 90 patients who were divided into two equal groups of 45 people and who early had diagnosis of AD (group 1; median age - 71 [66; 77] years) and POAG (group 2; median age - 68 [64; 77] years). 71] years).
Nat Biomed Eng
December 2024
Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!