Quantitative characterization of intracellular HO content, which is still difficult by the conventional biochemical methods due to the lack of real-time and non-invasive technique of single cell measurement, is a useful solution for cell state assessment. Based on the surface enhanced Raman scattering (SERS), we construct a novel boric acid (BA) nanoprobe to perform quantitative characterization of HO content, in which the p-thiol benzene boric acid (4-MPBA) reporter molecule modified with gold nanorods (AuNRs) is employed for Raman signal enhancement. The achieved result demonstrates obvious advantages of the synthesized AuNRs/4-MPBA/BA nanoprobe in measurement sensitivity of HO content. Importantly, this AuNRs/4-MPBA/BA nanoprobe will provide a powerful tool for dynamic monitoring and quantitative characterization of intracellular HO content during cell apoptosis or other cell growth processes, and then achieve important reference data for studying the corresponding molecular mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.120863 | DOI Listing |
Anal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
VA Center for Health Information and Communication, US Department of Veterans Affairs, Veterans Health Administration, Health Systems Research CIN 13-416, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
Importance: Compared with cisgender (CG) individuals, transgender and gender-diverse (TGD) individuals experience substantial social and economic disparities that can result in adverse mental health consequences. It is critical to understand potential barriers to care and to address the causes of the disparities in the future.
Objective: To characterize mental health care utilization among TGD veterans with depression.
JAMA Neurol
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota.
Importance: Although 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established cross-sectional biomarker of brain metabolism in dementia with Lewy bodies (DLB), the longitudinal change in FDG-PET has not been characterized.
Objective: To investigate longitudinal FDG-PET in prodromal DLB and DLB, including a subsample with autopsy data, and report estimated sample sizes for a hypothetical clinical trial in DLB.
Design, Setting, And Participants: Longitudinal case-control study with mean (SD) follow-up of 3.
J Proteome Res
January 2025
Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital and McGill University, Montreal, Quebec H3T 1E2, Canada.
The National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) was established to address the need for improved design, standardization, and validation of proteomics assays to enable better translation of biomarkers from the analytical lab to the clinic. Here, we applied CPTAC guidelines to characterize quantitative mass spectrometry (MS) assays in a new multiple reaction monitoring (MRM) proteomics panel. The panel of 50 proteins was developed in response to a previous study that identified a proteomic profile of altered translational control associated with response to a new cancer drug.
View Article and Find Full Text PDFPlant Genome
March 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!