This paper addresses the issue of pharmaceutical solid dosage form quantitation using handheld Raman spectrophotometers. The two spectrophotometers used are designed with different technologies: one allows getting a more representative sampling with the Orbital Raster Scanning technology and the other one allows setting acquisition parameters. The goal was to evaluate which technology could provide the best analytical results. Several parameters were optimized to get the lowest prediction error in the end. The main objective of this study was to evaluate if this kind of instrument would be able to identify substandard medicines. For that purpose, two case-study were explored. At first, a full ICH Q2 (R1) compliant validation was performed for moderate Raman scatterer active pharmaceutical ingredient (API) in a specific formulation. It was successfully validated in the ±15% relative total error acceptance limits, with a RMSEP of 0.85% (w/w). Subsequently, it was interesting to evaluate the influence of excipients when the API is a high Raman scatterer. For that purpose, a multi-formulation model was developed and successfully validated with a RMSEP of 2.98% (w/w) in the best case. These two studies showed that thanks to the optimization of acquisition parameters, Raman handheld spectrophotometers methods were validated for two different case-study and could be applied to identify substandard medicines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.120888DOI Listing

Publication Analysis

Top Keywords

raman handheld
8
handheld spectrophotometers
8
pharmaceutical solid
8
solid dosage
8
dosage form
8
form quantitation
8
acquisition parameters
8
identify substandard
8
substandard medicines
8
raman scatterer
8

Similar Publications

Discriminative detection of various organophosphorus nerve agents and analogues based on self-trapping probe coupled with SERS.

J Hazard Mater

January 2025

Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China. Electronic address:

Organophosphorus nerve agents (OPNAs) are highly lethal chemical warfare agents (CWAs), which poses a serious threat to human health and safety. The accurate and rapid identification of OPNAs is crucial for medical diagnosis and effective treatment. However, distinguishing between various OPNAs and their analogues using on-site point-of-care testing (POCT) remains challenging.

View Article and Find Full Text PDF

Noninvasive Optical Sensing of Aging and Diet Preferences Using Raman Spectroscopy.

Anal Chem

January 2025

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.

Effective dietary strategies and interventions for monitoring dietary exposures require accurate and noninvasive methods to understand how diet modulates health and risk of obesity; advances in technology are transforming the landscape and enabling more specific tailored approaches to nutritional guidance. This study explores the use of Raman spectroscopy (RS), a noninvasive and nondestructive analytical technique, to identify changes in the mice skin in response to constant dietary exposures. We found that RS is highly accurate to determine body composition as a result of habitual dietary patterns, specifically Vegan, Typical American, and Ketogenic diets, all very common in the US context.

View Article and Find Full Text PDF

From automated Raman to cost-effective nanoparticle-on-film (NPoF) SERS spectroscopy: A combined approach for assessing micro- and nanoplastics released into the oral cavity from chewing gum.

J Hazard Mater

December 2024

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:

Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.

View Article and Find Full Text PDF

Watermelons are in high demand for their juicy texture and sweetness, which is linked to their soluble solids content (SSC). Traditionally, watermelons have been sold as whole fruits. However, the decline in the mean size of households and the very large size of the fruits, together with high prices, mainly at the beginning of the season, mean that supermarkets now sell them as half fruits.

View Article and Find Full Text PDF

Antibody screening-assisted multichannel nanoplasmonic sensing chip based on SERS for viral screening and variants identification.

Biosens Bioelectron

March 2025

Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China. Electronic address:

The Omicron variants of SARS-CoV-2 have been spreading globally and have never disappeared from our sight, indicating that their coexistence with humans has become a fact, and monitoring its evolution and spread remains a current task. Although polymerase chain reaction (PCR) is the most commonly used virus detection method, it requires labor-intensive and time-consuming procedures in a laboratory setting. Herein, a multichannel nanoplasmonic sensing chip based on surface enhanced Raman spectroscopy (SERS) was developed for detecting N and S proteins, as well as IgG and IgM, related to SARS-CoV-2 Omicron variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!