Highly stretchable potentiometric ion sensor based on surface strain redistributed fiber for sweat monitoring.

Talanta

I-Lab, And Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China. Electronic address:

Published: July 2020

Development of stretchable potentiometric ion sensors has the observable potential for wearable devices to continuously monitoring of electrolytes in body fluids. However, the mechanical mismatch between soft elastomeric substrate and ion-selective electrode components greatly hinders sensor's fabrication and its stretching stability for long-term use. Here, we propose a new strategy to construct a potentiometric ion sensor on a surface strain redistributed elastic fiber (SSRE-fiber) with both high stretchability and high sensing stability. The SSRE-fiber is designed with a unique unilateral bead structure, which significantly changes its surface strain distribution during deformation. Benefit from this platform, the active sensing materials with high Young's modulus fabricated on the unilateral bead region can keep unchanged during stretching (0-200%). Thus, the as-prepared potentiometric sensors (ion-selective electrode and polymer/inorganic salt membrane-coated reference electrode) can perform with stable functions ignoring the stretching of the fiber. This new SSRE-fiber platform paves a way for the design of highly stretchable and stable electrochemical sensor capable of integrating into textiles for wearable biochemical detection applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.120869DOI Listing

Publication Analysis

Top Keywords

potentiometric ion
12
surface strain
12
highly stretchable
8
stretchable potentiometric
8
ion sensor
8
strain redistributed
8
ion-selective electrode
8
fiber ssre-fiber
8
unilateral bead
8
potentiometric
4

Similar Publications

A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.

View Article and Find Full Text PDF

Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies.

Biosensors (Basel)

January 2025

Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.

In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors.

View Article and Find Full Text PDF

A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.

View Article and Find Full Text PDF

Using potentiometric testing, we investigated the zeta potential of shield muck curing materials' particle surfaces, varying the concentration of metal ion complex. We analyzed the microscopic characteristics of shield muck curing products by using the electron microscopy, revealing the impact of metal ion complex on curing. Results showed that the metal ion complex significantly reduces the surface zeta potential of shield muck and conventional curing materials, with cement showing the most substantial effect, followed by shield muck, calcium carbonate, and calcium sulfate.

View Article and Find Full Text PDF

Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels.

Research (Wash D C)

January 2025

School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!