This work describes the screening of twenty three per- and polyfluoroalkyl substances (PFASs) in twenty five paper and board (P/B) packaging materials and their migration to several food simulants (50% ethanol, 95% ethanol and Tenax®) at different conditions of time and temperature. A different migration pattern depending on the carbon chain length was observed; while short carbon chain PFASs tend to migrate more to 50% ethanol than to 95% ethanol, long chain PFASs showed the opposite trend. On the other hand, very low migration percentages of all PFASs to Tenax® were found. Finally, migration of 9 PFASs into real foods (cereals, rice and infant milk powder) for 6 months was quantified and compared with the results obtained with the simulants. As a result, significant underestimations of the PFASs migration to foodstuffs were obtained using Tenax®, especially for short carbon chain PFASs and milk powder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.126746 | DOI Listing |
J Agric Food Chem
January 2025
Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, Prague CZ166 28, Czechia.
The fungi have traditionally been used in Asia for food coloring. Unfortunately, the most well-known species, , very often produce mycotoxin citrinin in addition to pigments, which poses a significant problem for the use of pigments in foods. There is a step in pigment biosynthesis where a side chain of five or seven carbons is attached to the tetraketide, the product of polyketide synthase, resulting in the formation of pigments in pairs.
View Article and Find Full Text PDFJ Ion Liq
December 2024
Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, United States.
Dicationic ionic liquids (DILs) are emerging as a powerful, next-generation approach to designing applied ILs because of their superior physicochemical properties as well as their diverse complexity and tunability for task specific applications. DILs are scarce in the literature compared to monocationic ILs (MILs), and one of their main issues is their expected tendency to possess higher melting temperatures. A series of 1,4-bis[2-(4-pyridyl)ethenyl] benzene and 1,4-bis[2-(2-pyridyl)ethenyl]benzene quaternary salts (Q-BPEBs) with different counterions (bromide, tosylate, and triflimide) and carbon chain lengths (C, C, and C) have been synthesized for their potential as DILs with strong photoluminescent properties in the solid state.
View Article and Find Full Text PDFSci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFScience
January 2025
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.
Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!