Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tumor microenvironment has been demonstrated to play a crucial role in modulating cancer progression. Amongst various cell types within the tumor microenvironment, cancer associated fibroblasts (CAFs) are in abundance, serving to modulate the biophysical properties of the stromal matrix, through excessive deposition of extracellular matrix (ECM) proteins that leads to enhanced tumor progression. There is still a critical need to develop a fundamental framework on the role of tumor-stromal cell interactions on desmoplasia and tumorigenicity. Herein, we developed a 3D microengineered organotypic tumor-stroma model incorporated with breast cancer cells surrounded by CAF-embedded collagen matrix. We further integrated our platform with atomic force microscopy (AFM) to study the dynamic changes in stromal stiffness during active tumor invasion. Our findings primarily demonstrated enhanced tumor progression in the presence of CAFs. Furthermore, we highlighted the crucial role of crosstalk between tumor cells and CAFs on stromal desmoplasia, where we identified the role of tumor-secreted PDGF-AA/-BB on elevated matrix stiffness. Inhibition of the activity of PDGFRs in CAFs led to attenuation of stromal stiffness. Overall, our work presents a well-controlled tumor microenvironment model capable of dissecting specific biophysical and biochemical signaling cues which lead to stromal desmoplasia and tumor progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2020.119975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!