A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol. | LitMetric

Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol.

Sci Total Environ

School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Published: July 2020

Fe-rich biochar with multivalent iron compounds (Fe, FeC, FeO, and FeAlO) pyrolyzed from sludge cake conditioned with Fenton's reagent and red mud was utilized as an efficient Fenton catalyst for the degradation of 4-chlorophenol (4-CP). Effects of pyrolysis temperature and sludge conditioner composition on the transformation of iron compounds were studied. Both homogeneous Fenton reaction initiated by Fe leached from both low-valent Fe and FeC, and heterogeneous Fenton reaction initiated by solid iron phases of FeO and FeAlO were revealed to contribute to the degradation of 4-CP. The removal efficiency of 4-CP remained 100% after five successive degradation rounds. The homogeneous Fenton reaction mainly works in the first degradation round, and the heterogeneous Fenton reaction dominates in subsequent degradation rounds. The findings of this study suggest that sewage sludge derived Fe-rich biochar could be utilized as an efficient Fenton catalyst for recalcitrant organics degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138299DOI Listing

Publication Analysis

Top Keywords

fenton reaction
16
efficient fenton
12
fenton catalyst
12
biochar multivalent
8
multivalent iron
8
catalyst degradation
8
degradation 4-chlorophenol
8
fe-rich biochar
8
iron compounds
8
feo fealo
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!